期刊文献+

低压条件下纳米流体的沸腾换热特性 被引量:7

Pool Boiling Heat Transfer of Nanofluids on a Plate Surface under Sub-atmospheric Pressures
下载PDF
导出
摘要 在不同低压压力和不同纳米流体浓度下对光滑传热面上的水基纳米流体的池内沸腾特性进行了试验研究。纳米流体由平均直径50nm的氧化铜粒子加入去离子水中组成,没有加入任何添加剂。研究主要针对7.2kPa到100kPa的压力区间和0.1%到2%的质量浓度区间内压力和颗粒浓度对光滑表面沸腾换热特性的影响,研究结果表明:压力对纳米流体的沸腾换热特性有强烈影响,沸腾换热系数和临界热流密度(CHF)强化率随着压力的降低而大幅度增加。纳米流体浓度对沸腾换热系数和临界热流密度(CHF)有重要影响,并且在质量浓度约1%附近存在一个最佳颗粒浓度。研究结果显示由与去离子水相比,质量分数为1%,压力为7.2kPa的纳米流体在光滑表面上的沸腾换热系数和临界热流密度都得到了显著提高。 Some boiling heat transfer experiments were performed to understand the boiling characteristics of the water-based nanofluids on a smooth plate surface under various sub-atmospheric pressures and concentrations of the nanofluids. The nanofluids consist of CuO nano-particles with average diameter of 50 nm and deionized water without any additional reagent. The study was focused on the influences of the pressure and nano-particle mass concentration of the nanofluid on the boiling heat transfer characteristics; the experimental pressure used is in the range of 7.2 kPa to 100 kPa, and the used nano-particle mass concentration of the nanofluid is between 0. 1%(wt) and 2%(wt). The experimental results show that both the heat transfer coefficient and critical heat flux (CHF) of nanofluids increase greatly with the decrease of test pressure. The nano-particle concentration of the nanofluids also has significant effect on the boiling heat transfer and CHF of the nanofluid, and the optimal nano-particle mass concentration with which the nanofluid can have the maximum boiling heat transfer is about 1.0%(wt). It was found that, comparing with deionized water, water-based nanofluid with concentration of 1.0 %(wt) can obviously improve the heat transfer coefficient and CHF under the pressure of 7.2 kPa.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2009年第6期922-926,共5页 Journal of Chemical Engineering of Chinese Universities
基金 上海市科委基础研究重点项目(04JC14049)
关键词 纳米流体 沸腾:强化换热 低压 nanofluids boiling enhanced heat transfer sub-atmospheric pressure
  • 相关文献

参考文献12

  • 1Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles [J]. ASME FED, 1995, 23 1: 99-105. 被引量:1
  • 2吕伦春,刘振华.竖直圆管内纳米流体自然对流沸腾的临界热通量研究[J].高校化学工程学报,2007,21(5):734-739. 被引量:3
  • 3李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学(E辑),2002,32(3):331-337. 被引量:26
  • 4Murshed S M S, Leong K C, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids [J]. Int J Thermal Sciences, 2005, 44(4): 367-373. 被引量:1
  • 5Yang Y, Hang Z G, Gulke E et al. Heat transfer properties of nanoparticles-in-fluid dispersions (nanofluids) in laminar flow [J]. Int J Heat and Mass Transfer, 2005, 48(6): 1107-1106. 被引量:1
  • 6Das S K, Putra N, Roetzel W. Pool boiling characteristics of nanofluids [J]. Int ,I Heat and Mass Transfer, 2003, 46(5): 851-862. 被引量:1
  • 7Das S K, Putra N, Roetzel W. Pool boiling of nano-fluids on horizontal narrow tubes [J]. International Journal of Multiphase Flow, 2003, 29(8): 1237-1247. 被引量:1
  • 8Bang I C, Chang S H. Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool [J]. Int J Heat and Mass Transfer, 2005, 48(2): 2407-2419. 被引量:1
  • 9Wen D S, Ding Y L. Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids [J]. Journal of Nanopartieles Research, 2005, 7(2): 265-275. 被引量:1
  • 10Vassallo P, Kuman R, Amico S D. Pool boiling heat transfer experiments in silica-water nano-fluids [J]. Int J Heat and Mass Transfer, 2004, 47(2): 407-411. 被引量:1

二级参考文献16

  • 1徐甦,周明华,张兴旺,雷乐成.金属有机物化学气相沉积法制备负载型纳米TiO_2光催化剂及性能评价[J].高校化学工程学报,2005,19(1):119-123. 被引量:9
  • 2施明恒,帅美琴,赖彦锷,李强,宣益民.纳米颗粒悬浮液池内泡状沸腾的实验研究[J].工程热物理学报,2006,27(2):298-300. 被引量:12
  • 3Bonjour J, Lallernand M. Effects of confinement and pressure on critical heat flux during natural convective boiling in vertical channels [J]. Int Comm Heat Mass Transfer, 1997, 31(7): 31-34. 被引量:1
  • 4Liu Z H, Prediction of critical heat flux on natural convective boiling in vertical short-thick tube submerged in saturated liquids [J]. Heat Transfer-Asian Research, 2003, 32(5): 402-410. 被引量:1
  • 5Nishikawa K, Fujita Y. Edited by James P Hartnett, Thomas F Irvine, Jr. Advances in Heat Transfer [M]. New York: Academic Press, 1990, 20: 1-82. 被引量:1
  • 6Monde M, Mitsutake Y. Critical heat flux of natural circulation boiling in a vertical tube effect of oscillation and circulation on CHF [J]. Int J Heat Mass Transfer, 2002, 45(20): 4133-4139. 被引量:1
  • 7Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles [A]. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exhibition [C]. San Francisco, CA, USA: 1995. 被引量:1
  • 8Xuan Y M, Li Q. Heat transfer enhancement ofnanofluids [J]. Int J Heat Fluid Flow,2000,21(1): 58-64. 被引量:1
  • 9Das S K, Putra N, Roetze 1 W. Pool boiling characteristics ofnanofluids [J]. Int J Heat Mass Transfer, 2003, 46(5): 851-862. 被引量:1
  • 10Vassallo P, Kuman R, Amico S D. Pool boiling heat transfer experiments in silica-water nano-fluids [2]. Int J Heat Mass Transfer,2004,47(2):407-411. 被引量:1

共引文献27

同被引文献73

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部