期刊文献+

基于贝叶斯网络的摩擦学系统状态辨识的知识获取 被引量:2

Knowledge Acquisition of Tribological System Condition Identification Using Bayesian Network
下载PDF
导出
摘要 研究了基于贝叶斯网络的摩擦学系统状态辨识知识的获取方法。针对摩擦磨损试验数据一般比较齐全且数据量相对比较大的特点,将贝叶斯网络用于摩擦学系统状态辨识的知识获取,通过计算建立属性之间的依赖关系,获得各种依赖关系下的条件概率表,说明依赖关系的强弱,从而获得对机器摩擦学系统状态辨识有指导意义的客观知识,以利于机器摩擦磨损状态辨识的智能化。将贝叶斯网络用于滑动轴承摩擦磨损试验数据的知识获取,获取该摩擦学系统状态辨识的定性及定量知识。 Knowledge acquisition method of tribologieal system condition identification using Bayesian network was pro- posed. For the much complete testing data of friction and wear, Bayesian network was used in tribological system condition identification for knowledge acquisition. The objective knowledge which has guiding significance for tribological system con- dition identification of machines was acquired through computing the dependence relation among different attributes. This is contributive to the intelligent condition identification of machine tribological system. The developed method based on Bayesian network was used in the knowledge acquisition of sliding bear to acquire the qualitative and quantitative knowl- edge of tribological system condition identification.
出处 《润滑与密封》 CAS CSCD 北大核心 2009年第12期1-4,共4页 Lubrication Engineering
基金 国家自然科学基金项目(50705070) 教育部博士点新教师项目(20070497029)
关键词 贝叶斯网络 摩擦学系统 状态辨识 知识获取 Bayesian network tribological system condition identification knowledge acquisition
  • 相关文献

参考文献4

  • 1慕春棣,tsinghua.edu.cn,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5):660-666. 被引量:100
  • 2Cheng J, Bell D, Liu W. An algorithm for Bayesian belief network construction from data [ C ]. Proceedings of AI&STAT' 97,1997 : 83 - 90. 被引量:1
  • 3Cheng J, Bell D, Liu W. Learning belief networks from data: an information theory based approach [ C ]. 6th ACM Conf on Info and Knowl. Mgmt,1997:93 - 102. 被引量:1
  • 4Jie Cheng, Russell Greiner, Jonathan Kelly, et al. Learning Bayesian networks from data: An information-theory based approach[ J]. Artificial Intelligence ,2002,137 ( 1/2 ) :43 - 90. 被引量:1

二级参考文献11

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61 被引量:1
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207 被引量:1
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295 被引量:1
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243 被引量:1
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430 被引量:1
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45 被引量:1
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61 被引量:1
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347 被引量:1
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152 被引量:1
  • 101999-03-15 被引量:1

共引文献99

同被引文献10

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部