期刊文献+

基于水平集方法的均布式柔性机构的拓扑优化设计 被引量:3

Topology optimization of distributed compliant mechanisms base on level set method
下载PDF
导出
摘要 提出一种利用水平集方法进行均布式柔性机构设计的新方法。根据水平集边界表达方法中具有几何信息的特点,将图像分析中的二次能量函数引入到水平集模型中,以控制柔性机构拓扑优化设计结果的几何尺寸,得到等宽带状均布的柔性机构,较好地解决了传统柔性机构拓扑优化中容易出现单点铰链问题。应用半隐式的加性分裂算子(AOS)算法求解水平集方程,松弛了逆风格式中CFL(Courant-Frie drichs-Lewy)条件对时间步长的限制,提高了求解效率。通过一个典型的二维算例来验证方法的有效性。 A new method for designing the distributed compliant mechanisms is presented based on level set method. The quadratic energy function used in image analysis is introduced into the level set model to control the minimal geometrical dimension of the compliant mechansim optimized results and gain a strip-like even-distributed compliant mechanisms, which solves well the problems of one-node-connected hinges that exit in the conventional topology optimization of compliant mechanism. A semi-implicit additive operator splitting (AOS) scheme is adopted to solve the level set equation. In this method the time step decided by the CFL condition in the Up-wind scheme is clearly relaxed and it improves the efficiency of the optimization arithmetic. A typical two dimensional example is applied to demonstrate the validity of the presented method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第6期804-810,共7页 Chinese Journal of Computational Mechanics
基金 国家'高档数控机床与基础制造装备'科技重大专项(2009ZX040001-015) 国家'863'高技术研究发展计划(2006AA04Z162) 国家自然科学基金(50975107)资助项目
关键词 水平集方法 柔性机构 拓扑优化 二次能量函数 加性算子分裂算法 逆风格式 level set method topology optimization quadratic energy function additive operator splitting (AOS) scheme up-wind scheme
  • 相关文献

参考文献14

  • 1OSHER S, SETHIAN A. Front propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulation[J]. Journal of Computational Physics, 1988,79 : 12-49. 被引量:1
  • 2SETHIAN A, WIEGMANN A. Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000,163 : 489-528. 被引量:1
  • 3WANG M Y, WANG method for structure X M, GUO D. A level set topology optimization [ J ]. Computer Methods in Applied Mechanics and Engineering, 2003,192 :227-246. 被引量:1
  • 4ALLAIRE G, JOUV F, TOADER A. Structure optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004,194:363-393. 被引量:1
  • 5BENDSOE M P, SIGMUND O. Topology Optimization Theory, Methods and Applications [M]. Springer, 2003. 被引量:1
  • 6ANANTHASURESH G K, KOTA S, GIANCHANDANI Y. Amethodieal approach to the design of compliant micromechanisms[J]. In Solid-State Sensor and Actuator Workshop, 1994:189-192. 被引量:1
  • 7HOWELL L L. Compliant Mechanisms[M]. John Wiley & Sons, Inc. , New York, 2001. 被引量:1
  • 8李震,孙宝元,钱敏,张军.基于节点密度的柔性机构的拓扑优化设计[J].计算力学学报,2007,24(2):130-134. 被引量:15
  • 9WANGM Y, CHENSK, WANGX M. Design of multimaterial compliant mechanisms using level set methods[J]. Journal of Mechanical Design, 2005, 127:146-157. 被引量:1
  • 10PETERSSON J, SIGMUND O. Slope constrained topology optimization[J]. International Journal for Numerical Methods in Engineering, 1998,41 (8) : 1417-1434. 被引量:1

二级参考文献8

  • 1郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法[J].力学学报,2004,36(5):520-526. 被引量:35
  • 2ANANTHASURESH G K,KOTA S.Gianchandani Y.A methodical approach to the design of compliant micromechanisms[A],IEEE Solid-State Sensor and Actuator Workshop[C].1994:189-192. 被引量:1
  • 3SIGMUND O.On the design of compliant mechani-sms using topology optimization[J].Mech Struct Mach,1997,25:495-526. 被引量:1
  • 4PEDERSEN B W,BUHL T,SIGMUND O.Topology synthesis of large-displacement compliant mechanisms[J].International Journal for Numerical Methods in Engineering,2001,50:2683-2705. 被引量:1
  • 5HABER R B,JOG C S,BENDSOE M P.A new approach to variable topology,shape design using a constraint on perimeter[J].Structural Optimization,1996,11:1-12. 被引量:1
  • 6PETERSSON J,SIGMUND O.Slope constrained topology optimization[J].International Journal for Numerical Methods in Engineering,1998,41:1417-1434. 被引量:1
  • 7SIGMUND O,PETERSSON J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards,mesh-dependencies and local minima[J].Structural Optimization,1998,16:68-75. 被引量:1
  • 8RAHMATALLA S F,SWAN C C.A Q4/Q4 continuum structural topology optimization implementation[J].Structural and Multidisciplinary Optimization,2004,27:130-135. 被引量:1

共引文献14

同被引文献36

  • 1罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154
  • 2王安麟,姜涛.基于进化元胞自动机的结构拓扑优化[J].机械工程学报,2005,41(2):1-5. 被引量:17
  • 3Allaire G, Gournay F D, Jouve F, et al. Structural Optimization Using Topological and Shape Sensitiv- ity via a Level Set Method[J]. Control and Cybernetics, 2005,34 ( 1 ) : 59-80. 被引量:1
  • 4Sethian J A,Wiegmann A. Structural Boundary De- sign via Level Set and Immersed Interface Methods [J]. Journal of Computational Physics, 2000, 163 (2) :489-528. 被引量:1
  • 5Wang M Y, Wang X, Guo D. A Level Set Method for Structural Topology Optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(1/2) ,227-246. 被引量:1
  • 6Wang M Y, Wang X. PDE-driven Level Sets, Shape Sensitivity and Curvature Flow for Structural Topol- ogy Optimization[J]. Computer Modeling in Engi- neering b- Sciences, 2004,6 (4) : 373-395. 被引量:1
  • 7Luo Z,Wang M Y,Wang S Y. A Level Set-based Pa- rameterization Method for Structural Shape and Topolo- gy Optimization[J]. International Journal for Numerical Methods in Engineering,2008,76(1) : 1-26. 被引量:1
  • 8Bendsoe M P, Sigmund O. Topology Optimization:Theory, Methods, and Applications[M].New York : Springer, 2003. 被引量:1
  • 9Chen J Q,Shapiro V,Suresh K,et al. Shape Optimi zation with Topological Changes and Parametric Control[J]. International Journal for Numerical Methods in Engineering,2007,71 (3) : 313-346. 被引量:1
  • 10Wang S Y,Wang M Y. Radial Basis Functions and Level Set Method for Structural Topology Optimiza- tion[J]. International Journal for Numerical Meth- ods in Engineering, 2006,65 (12) : 2060-2090. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部