期刊文献+

On the measurement of slip length for liquid flow over super-hydrophobic surface 被引量:8

On the measurement of slip length for liquid flow over super-hydrophobic surface
原文传递
导出
摘要 To design a surface with large slip or larger drag reduction is a pop issue in the fields of liquid transporting and body swimming. In this context, it is a crucial problem to measure the slip length for these surfaces. Here we propose a novel method by using rheometer for this objective. This method is implemented by designing the distribution of the super-hydrophobic area on the sample. Using this method, a slip length of 40 μm for 70 wt% glycerin flow over a super-hydrophobic surface with stripe structure (the period, width and height of ridges are 150 μm, 40 μm and 65 μm, respectively) is measured. The result shows that the slip length measured using this method is in good agreement with former results measured by other methods. This method is fit for measuring the slip length of super-hydrophobic surface whose structure ranges from microto nanoscale. To design a surface with large slip or larger drag reduction is a pop issue in the fields of liquid transporting and body swimming. In this context, it is a crucial problem to measure the slip length for these surfaces. Here we propose a novel method by using rheometer for this objective. This method is implemented by designing the distribution of the super-hydrophobic area on the sample. Using this method, a slip length of 40 μm for 70 wt% glycerin flow over a super-hydrophobic surface with stripe structure (the period, width and height of ridges are 150 μm, 40 μm and 65 μm, respectively) is measured. The result shows that the slip length measured using this method is in good agreement with former results measured by other methods. This method is fit for measuring the slip length of super-hydrophobic surface whose structure ranges from microto nano-scale.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2009年第24期4560-4565,共6页
基金 Supported by the Foundation for the Author of National Excellent Doctoral Disserta-tion of China (Grant No.2006039) Key Research Foundation of the National Natural Science Foundation of China (Grant No. 50435030)
关键词 疏水表面 长度测量 流量测量 滑移 液体 条纹结构 纳米尺度 微米 super-hydrophobic surface, slip length, drag reduction, rheometer
  • 相关文献

参考文献12

  • 1张雪花,胡钧.固液界面纳米气泡的研究进展[J].化学进展,2004,16(5):673-681. 被引量:18
  • 2ZHENGLijun WUXuedong LOUZeng WUDan.Superhydrophobicity frommicrostructured surface[J].Chinese Science Bulletin,2004,49(17):1779-1787. 被引量:10
  • 3Luk S,Mutharasan R,Apelianff D.Experimental observations of wall slip: tube and packed bed flow[].Industrial and Engineering Chemistry Research.1987 被引量:1
  • 4Choo J H,Glovnea R P,Forrest A K, et al.A low friction bearing based on liquid slip at the wall[].J Tribol-T ASME.2007 被引量:1
  • 5Fan T H,Vinogradova O I.Hydrodynamic resistance of close-ap- proached slip surfaces with a nanoasperity or an entrapped nano- bubble[].Physical Review E Statistical Nonlinear and Soft Matter Physics.2005 被引量:1
  • 6Yang S J,Dammer S M,Bremond N, et al.Characterization of nanobubbles on hydrophobic surfaces in water[].Langmuir.2007 被引量:1
  • 7WU ZhiHua,ZHANG XueHua,ZHANG XiaoDong,SUN JieLin,DONG YaMing,HU Jun.In situ AFM observation of BSA adsorption on HOPG with nanobubble[J].Chinese Science Bulletin,2007,52(14):1913-1919. 被引量:3
  • 8Journet C,Moulinet S,Ybert C, et al.Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pres- sure[].EPL-Europhys Lett.2005 被引量:1
  • 9Genzer J,Efimenko K.Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers[].Science.2000 被引量:1
  • 10Tadanaga K,Katata N,Minami T.Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method[].Journal of the American Ceramic Society.1997 被引量:1

二级参考文献78

  • 1Hu J, Xiao X D, Ogletree D F, Salmeron M. Science , 1995, 268: 267-268 被引量:2
  • 2Xu L, Lio A, Hu J, Ogletree F D, Salmeron M. J. Phys. Chem. B, 1998, 102 (3): 540-548 被引量:2
  • 3Ljunggren S, Eriksson J C. Colloids Surf. A, 1997, (129/130): 151-155 被引量:1
  • 4Attard P. Adv. Colloid Interface, 2003, 104: 75-91 被引量:2
  • 5Christenson H K, Claesson P M. Science, 1988, 239: 390-392 被引量:1
  • 6Carambassis A, Jonker L C, Attard P, Rutland M W. Phys. Rev. Lett., 1998, 80(24): 5357-5360 被引量:1
  • 7Mahnke J, Stearnes J, Hayes R A, Fornasiero D, Ralston J. Phys. Chem. Chem. Phys., 1999, 1: 2793-2798 被引量:1
  • 8Craig V S J, Ninham B W, Pashley R M. Langmuir, 1999, 15 (4): 1562-1569 被引量:1
  • 9Zhou Z A, Xu Z H, Finch J A. J. Colliod Interface. Sci., 1996, 179: 311-314 被引量:1
  • 10Considine R F, Hayes R A, Horn R G. Langmuir, 1999, 15: 1657-1659 被引量:1

共引文献28

同被引文献44

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部