摘要
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied.By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comesabout in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dotlevels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in thisstructure by the presence of an appropriate magnetic flux. However, in absence of magnetic flux spin polarization andspin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electronfrom one terminal can select a specific terminal to depart from the quantum dots according to its spin state.
基金
Supported by the National Natural Science Foundation of China under Grant No.10847109
the Education Department of Liaoning Province under Grant No.2009A309