期刊文献+

异质环境下的空间关联规则挖掘 被引量:5

Algorithm of Mining Spatial Association Data Under Spatially Heterogeneous Environment
原文传递
导出
摘要 分析了异质空间情形下的空间关联规则挖掘特征,给出了异质环境下空间关联规则挖掘的几个重要指标及计算方法。在实际中应用该方法,能有效地取得空间关联规则及由异质性导致的表现区域的差异,真实地反映事物的客观规律。 Spatial heterogeneity widely exists in the nature, Traditional spatial association data mining assumes that the area on which the mining algorithm performs is evenly distributed, which leads to the mismatch between the mined knowledge and the reality. We suggest that spatial association mining should consider this spatial heterogeneity when designing mining algorithms. The characteristics of spatial association mining were analyzed. Three key measuring indexes indicating spatial association strength were defined. The method of calculating the indexes was presented. The algorithm for mining spatially heterogeneous association patterns and their corresponding subregions in which the pattern shows strong association was proposed. Practical application proved that the proposed strategy was valuable and effective in mining spatial association patterns under spatially heterogeneous environment.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第12期1480-1484,共5页 Geomatics and Information Science of Wuhan University
基金 地理信息系统教育部重点实验室开放研究基金资助项目(WD200610) 国家自然科学基金资助项目(40601026)
关键词 异质环境 空间关联规则 数据挖掘 算法 spatial heterogeneity spatial association rule data mining algorithm
  • 相关文献

参考文献9

  • 1李德仁著..空间数据挖掘的理论与应用[M].北京:科学出版社,2006:569.
  • 2马荣华,马晓冬,蒲英霞.从GIS数据库中挖掘空间关联规则研究[J].遥感学报,2005,9(6):733-741. 被引量:24
  • 3Li Xiaolei. Mining Spatial Association Rules in Spatially Heterogeneous Environment[C]. SPIE, Wuban, China, 2008. 被引量:1
  • 4徐爱萍,刘德喜.基于扩展集合操作的频繁项集挖掘算法研究[J].武汉大学学报(信息科学版),2006,31(2):184-187. 被引量:3
  • 5Lee A J T, Hong R W, Ko W M, et al. Mining Spatial Association Rules in Image Databases[J].Information Sciences, 2007, 177:1 593-1 608. 被引量:1
  • 6沙宗尧,边馥苓,陈江平.知识的综合发现:理论、概念及应用[J].武汉大学学报(信息科学版),2002,27(4):397-402. 被引量:5
  • 7Bai Y, Xie Y, et al. Using a Hybrid Fuzzy ier (HFC) to Map Typical Grassland Vegeta- Xilin River Basin. Inner Mongolia, China International 29(8): 2 317. 被引量:1
  • 8Fotheringham A S, Brunsdon C, Charlton M. Geographically Weighted Regression: the Analysis of Spatially Varying Relationships[M]. NJ, USA:Wiley, 2002. 被引量:1
  • 9Katsuya T, Kentaro Y, Yasushi K. Applying Geographically Weighted Regression to Conjoint Analysis: Empirical Findings from Urban Park Amenities [C]. American Agricultural Economics Association Annual Meeting, Orlando, Florida, USA, 2008. 被引量:1

二级参考文献33

  • 1汪闽 周成虎.空间数据挖掘方法的研究进展.中国地理信息系统协会2001年年会[M].成都,2001.. 被引量:1
  • 2Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Database[C].ACM-SIGMOD on Management of Data,Washington D C,1993 被引量:1
  • 3Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C].Proc.of VLDB,Santiago,Chile,1994 被引量:1
  • 4Han J,Cai Y,Cercone N.Data-driven Discovery of Quantitative Rules in Relational Databases[J].IEEE Trans.on Knowledge and Data Engineering,1993,5(1):29-40 被引量:1
  • 5Han J,Pei J,Yin Y.Mining Frequent Patterns Without Candidate Generation:A Frequent-Pattern Tree Approach[J].Data Mining and Knowledge Discovery,2004(8):53-87 被引量:1
  • 6Park M,Chen M,Yu P.An Effective Hash Based Algorithm for Mining Association Rules[C].ACM SIGMOD,Chicago,1995 被引量:1
  • 7Pasquier N,Bastide Y,Taouil R,et al.Efficient Mining for Association Rules Using Closed Itermset Lattices[J].Information Systems,1999,24(1):25-46 被引量:1
  • 8Fayyad U M, Piatetsky-Shapiro G, Smyth P, et al. Advances in Knowledge Discovery and Data Mining[M]. AAAI Press, Menlo Park, CA. 1996. 被引量:1
  • 9Koperski K, Han J. Discovery of Spatial Association Rules in Geographic Information Databases[A]. Egenhofer M J, Herring J R. Advances in Spatial Databases [C]. LNCS951 , SpringerVerlag, Berlin, 1995: 47-66. 被引量:1
  • 10Sester M. Knowledge Acquisition for the Automatic Interpretation of Spatial Data [J]. International Journal of Geographic Information Science, 2000,14 (1) :1-24. 被引量:1

共引文献29

同被引文献22

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部