摘要
讨论了NA阵列行和最大值的BAUM-KATZ大数律的精确渐近,给出了∑n≥1nr/p-2 P〔max1≤j≤kn|Sj-ESnj|≥εn1/p〕∑n≥1n/1p〔max1≤j≤k|snj-ESnj|≥εn1/p〕在p阶ces、aro一致可积的相关条件下,当ε→0时的精确渐近性.
Studied the precise asymptotics in the BAUM-KATE law of large numbers for sums of NA random matrix sequences.Eatablished the precise asymptotics for ∑n≥1nr/p-2 P〔max1≤j≤kn|Snj-ESnj|≥εn1/p〕∑n≥1n/1p〔max1≤j≤k|snj-ESnj|≥εn1/p〕asε→ 0 in the uniform integrability of the p-cesaro sense.
出处
《高师理科学刊》
2009年第6期1-4,共4页
Journal of Science of Teachers'College and University
基金
国家自然科学基金项目(10771070)
关键词
NA列
独立阵列和
精确渐进性
NA random sequences
sums of radom matrix sequences
precise asymptotics