期刊文献+

具有非负困难度的符号几何规划的一种分解方法

A Decomposition Method for Signomial Geometric Programming with Nonnegative Degree of Difficulty
下载PDF
导出
摘要 本文针对具有非负困难度的符号几何规划问题提出了一种新的分解方法。该方法首先利用指数变换及矩阵理论,将原问题等价地转化为一个非线性程度较低的可分离规划,然后,将所得等价问题分解成一系列易于求解的子问题,并且当困难度为零时,文中给出了求解子问题精确解的方法。最后,通过数值实例验证了新方法的有效性和可行性。 In this paper, a decomposition algorithm for signomial geometric programming with nonnegative degree of difficulty is proposed. Through the exponential transformation and matrix theory, a problem equivalent to the original problem can be obtained which is a separable programming with lower nonlinear degree. This equivalent problem is decomposed into several suhproblems, and the explicit solution to each subproblem can be acquired when the degree of difficulty is zero. At last, some examples are given to verify the feasibility and efficiency of our algorithm.
出处 《工程数学学报》 CSCD 北大核心 2009年第6期990-996,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10601030) 上海财经大学"十五" "211工程"重点学科建设项目
关键词 符号几何规划 困难度 正项几何规划 signomial geometric programming degree of difficulty polynomial geometric program-ming
  • 相关文献

参考文献6

  • 1Federowicz A J, Rajgopal Jayant. Robustness of polynomial geometric programming optima[J]. Math Prog, 1999, 85:423-431. 被引量:1
  • 2Sherali H D. Global optimization of nonconvex polynomial programming problems having rational expo- nents[J]. Journal of Global Optimization, 1998, 12:267-283. 被引量:1
  • 3Shen PP, Zhang K C. Global optimization of signomial geometric programming using linear relaxation[J]. Applied Mathematics and computation, 2004, 150:99-114. 被引量:1
  • 4申培萍,李晓爱.求符号几何规划全局解的新方法[J].工程数学学报,2006,23(5):876-880. 被引量:4
  • 5王燕军,张可村.符号几何规划的一种分解方法[J].系统科学与数学,2006,26(4):385-394. 被引量:3
  • 6Duffin R J, Peterson E L, Zener C. Geometric Programming Theory and Application[M]. New York: Wiley, 1967:115-140. 被引量:1

二级参考文献12

  • 1隋树林,贺国平.一般的正项几何规划的一种分解方法[J].应用数学学报,1995,18(3):321-328. 被引量:4
  • 2Alejandre J L,Allueva A I and Gonzalez J M.A new algorithm for geometric programming based on the linear structure of its dual problem.Mathematical and Computer Modelling,2000,31:61-78. 被引量:1
  • 3Passy U,Wilde D J.Generalized polynomial optimization.Journal on Applied Mathematics,1967,15(5):1344-1356. 被引量:1
  • 4Avriel M,Dembo R,Passy U.Solution of generalized geometric programs.Internat.J.Numer.Methods Engrg.,1975,9:149-169. 被引量:1
  • 5Ecker J G.Geometric programming:Methods,computations and applications.SIAM Review,1980,22(3):338-362. 被引量:1
  • 6Kortanek K O,Xu Xiaojie,Ye Yinyu.An infeasible interior-point algorithm for solving primal and dual geometric programs.Mathematical Programming,1996,76:155-181. 被引量:1
  • 7Fletcher R 著.游兆永等译.实用最优化方法.天津:天津科技翻译出版公司,1990. 被引量:1
  • 8Tuy H. Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms[J]. Journal of Global Optimization, 1991,1(1):23-36 被引量:1
  • 9Ron S Dembo. A set of geometric programming test problems and their solutions[J]. Mathematical Programming, 1976,10:192-213 被引量:1
  • 10Sherali H D. Global optimization of nonconvex polynomial programming problems having rational exponents[J]. Journal of Global Optimization, 1998,12:267-283 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部