摘要
Nonpolar (1120) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1102) sapphire substrate. The structural and electrical properties of the a-plane GaN films are investigated by high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and van der Pauw Hall measurement. It is found that the Hall voltage shows more anisotropy than that of the c-plane samples; furthermore, the mobility changes with the degree of the van der Pauw square diagonal to the c direction, which shows significant electrical anisotropy. Further research indicates that electron mobility is strongly influenced by edge dislocations.
Nonpolar (1120) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1102) sapphire substrate. The structural and electrical properties of the a-plane GaN films are investigated by high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and van der Pauw Hall measurement. It is found that the Hall voltage shows more anisotropy than that of the c-plane samples; furthermore, the mobility changes with the degree of the van der Pauw square diagonal to the c direction, which shows significant electrical anisotropy. Further research indicates that electron mobility is strongly influenced by edge dislocations.
基金
Project supported by the National Natural Science Foundation of China (Nos.60736033,60676048)
the National Key Science and Technology Special Project (No.2008ZX01002-003)