期刊文献+

基于强跟踪滤波器的液压伺服系统实时故障诊断 被引量:1

Online Fault Diagnosis for Hydraulic Servo Systems Based on Strong Tracking Filter
下载PDF
导出
摘要 为了在线监测运行工况和提高其可靠性,研究了液压伺服系统的实时故障诊断模型和方法。使用强跟踪滤波器联合估计系统的状态和未知时变参数,使用修正的贝叶斯算法检测故障和估计出故障的幅值,从而建立故障诊断模型和实现液压伺服系统的实时故障诊断。仿真结果证实了模型的合理性和可行性,参数估计误差小于1.2%。该方法对模型参数的不确定性具有较强的鲁棒性,能正确检测和分离液压伺服系统的故障。 In order to online monitor running condition and to improve reliability,a real time fault diagnostic model and a methodology of hydraulic servo systems were studied.Modeling and online diagnosis of hydraulic servo systems were realized by estimating unknown time-varying parameters and system status with strong tracking filter,and by detecting fault and estimating fault magnitude using modified Bayes algorithm.Simulation results show that the model is correct and feasible,and that parameter estimation error is less than 1.2%.Hydraulic servo system fault can be detected and isolated correctly by this way,which has strong robustness against uncertainty of model parameters.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第23期7553-7556,共4页 Journal of System Simulation
基金 国家自然科学基金(60721003)
关键词 液压伺服系统 故障诊断 强跟踪滤波器 参数估计 hydraulic servo systems fault diagnosis strong tracking filter parameters estimation
  • 相关文献

参考文献12

  • 1杨勇..多自由度液压伺服系统的控制策略研究[D].中南大学,2006:
  • 2焦晓红,耿秋实,方一鸣,李运锋.液压伺服并联机器人的自适应鲁棒跟踪控制[J].系统仿真学报,2003,15(3):401-403. 被引量:19
  • 3谭树彬..轧机厚控系统状态监测与故障诊断的研究与应用[D].东北大学,2006:
  • 4周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:148
  • 5Teodor Marcu, Birgit Koppen-Seliger, Reinhard Stiicher. Design of fault detection for a hydraulic looper using dynamic neural networks [J]. Control Engineering Practice (S0967-0661), 2008, 16(2): 192-213. 被引量:1
  • 6李夏.基于Petri网的故障诊断技术研究及其在液压系统中的应用[D].同济大学博士论文,2006. 被引量:2
  • 7祝海林,高澜庆.基于流量信号的液压系统故障诊断[J].北京科技大学学报,2001,23(1):66-70. 被引量:11
  • 8S Bengio, Y Bengio. Taking on the Curse of Dimensionality in Joint Distributions Using Neural Networks [J]. IEEE Trans. on Neural Networks (S 1045-9227), 2000, 11 (3): 550-557. 被引量:1
  • 9Steven X Ding. Model-based Fault Diagnosis Techniques [M]. Berlin, Heidelberg, Germany: Springer Verlag, 2008. 被引量:1
  • 10周东华,叶银忠著..现代故障诊断与容错控制[M].北京:清华大学出版社,2000:347.

二级参考文献40

共引文献175

同被引文献6

  • 1Lee D J,Alfriend K T.Precise real-time satellite orbit determination using the unscented Kalman filter[C]//13th AAS/AIAA Space Flight Mechanics Meeting,Puerto Rico,2003:9-13. 被引量:1
  • 2Rao S K.Modified gain extended Kalman filter with application to bearings-only passive manoeuvering target tracking[J].IEEE Proc-Radar Sonar Navig(S1751-8792),2005,152(4):239-244. 被引量:1
  • 3Arulampalam S,Maskell S,Gordan N,et al.A tutorial on particle filters for online nonlinear/nongaussian bayesian tracking[J].IEEE Transaction on Signal Processing,2002,50(2):174-188. 被引量:1
  • 4Merwe R V,Douvet A,Freitas N De,et al.The unscented particle filter[R].Technical Report CUED/F@INPENG TR380,Cambridge University Engineering Department2000. 被引量:1
  • 5He Y,Song Q,Dong Y L,et al.Adaptive Tracking Algorithm Based on Modified Strong Tracking Filter[C]//CIE'06,International Conference on Radar,2006:1-4. 被引量:1
  • 6Shinhak L,Tsun Y Y.A Robust Spatial Acquisition Algorithm for Extended Source using Subpixel Image Scanning[C]//Conf Signal Processing Applications and Technology,ICSPAT99,Orlando,Florida,1999. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部