期刊文献+

Reissner-Mindlin板的非协调稳定化组合有限元法计算

Numerical simulation of non-conforming stabilized combined Reissner-Mindlin plates based on finite element method
下载PDF
导出
摘要 对Reissner-Mindlin板提出了一种非协调稳定化组合有限元格式.采用三种非协调元进行了数值计算.结果表明该方法可以克服locking现象,对网格畸变不敏感,若适当调整参数,就有高精度. Non-conforming stabilized combined finite element method is presented to approximate the Reissner-Mindlin plate. Three finite element spaces are applied to the computation. Numerical results show that the method can avoid the locking phenomenon and is not sensitive to mesh distortion. If proper parameter is chosen, it shows high accuracy at coarse meshes.
作者 刘德斌 杨艳
出处 《西南民族大学学报(自然科学版)》 CAS 2009年第6期1109-1113,共5页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 Reissner-Mindlin 非协调有限元 locking现象 Reissner-Mindlin plate non-conforming finite element locking phenomenon
  • 相关文献

参考文献8

  • 1ZIENKIEWICZ O C, TAYLOR R L, TOO J. Reduced integration technique in general analysis of plates and shells[J]. Int J Numer Meth Engng, 1971, 3: 275-290. 被引量:1
  • 2JOHNSON C, PITKARANTA J. Analysis of some mixed finite element methods related to reduced integration[J]. Math Comp, 1982, 38, 375-400. 被引量:1
  • 3BATHE KJ, DVORK1N E. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation[J]. Inter J Numer Meth Engng, 1985, 21: 367-383. 被引量:1
  • 4MING PINGBING, SHI ZHONGCI. Two nonconforming quadrilateral elements for the Reissner- Mindlin plate[J]. Mathematical Models and Methods in Applied Science, 2005, 15, 10: 1503-1517. 被引量:1
  • 5BATOZ J L, BENTAHAR M. Evaluation of a new quadrilateral thin plate bending element[J].lnter J Numer Meth Eng, 1982, 18, 1655-1677. 被引量:1
  • 6TAYLOR R L, SIMO J C, ZIENKIEWICZ O C, et al. The patch test-a condition for assessing FEM convergence[J]. Int J Num Meth Eng, 1986, 22: 39-62. 被引量:1
  • 7吴长春,卞学鐄著..非协调数值分析与杂交元方法[M].北京:科学出版社,1997:386.
  • 8SHI ZHONGCI. A convergence condition for the quadrilateral Wilson element[J]. Numer Math 1984, 44: 349-361. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部