期刊文献+

WSNs布局的粒子进化的多粒子群优化策略

The Strategy for Optimizing the Layout of WSNs Based on the Evolution of Multi-particle PSO
下载PDF
导出
摘要 在粒子进化的多粒子群算法基础上,提出了一种无线传感网络节点布局的优化策略.该策略通过多个粒子群彼此独立地搜索解空间,提高了算法的寻优能力,有效地避免了"早熟"问题,提高了算法的稳定性.仿真实验表明,与传统的粒子群算法相比,该算法有效覆盖率由75.36%提高到80.96%,收敛速度提高了19.4%.因此粒子进化的多粒子群优化策略具有比传统的粒子群算法更好的优化效果. It presents a strategy to achieve the optimization of layout node based on the evolution of multi-particle particle swarm optimization (PSO). The strategy adopted by the humor of particles with each other independent groups to search for solutions space, to improve optimization of the algorithm ability to effectively avoid the "premature" to improve the stability of the algorithm. The simulation showed that the traditional PSO, the algorithm effective coverage by 75.36 percent to 80.96 percent, Convergence rate increased 19.4 percent. Therefore, the evolution of multi-particle PSO strategy than the traditional PSO has a better optimization results.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第12期16-18,22,共4页 Microelectronics & Computer
基金 浙江省教育厅项目(Y200805812)
关键词 无线传感网络 粒子群算法 有效覆盖率 粒子进化 WSNs PSO effective coverage rate particle evolution
  • 相关文献

参考文献6

二级参考文献18

  • 1李新,孙丹丹,苗建松,周立刚,丁炜.功率控制下基于能耗最小的Ad hoc网络路由选择算法[J].微电子学与计算机,2006,23(12):1-3. 被引量:4
  • 2Haas Z J,Halpern J Y,Li L Cossip-based ad-hoc routing[J].In:Proc.of the IEEE INFOCOM.New York:IEEE Communications Society,2002:707-1716 被引量:1
  • 3Hedemiemi S,Liestman A.A survey of gossiping and broadcasting in communication networks[J].Networks,1988,18(4):319-349 被引量:1
  • 4Heinzelman W R,Kulik J,Balakrishnan H.Adaptive protocols for information dissemination in wireless sensor networks[C].In:Proceedings of the ACM MobiCom,Seattle:ACM Press,1999:174-185 被引量:1
  • 5Kulik J,Heinzelman W R,Balakrishnan H.Negotiation based protocols for disseminating information in wireless sensor networks[J].Wireless Networks,2002,8(2-3):169-185 被引量:1
  • 6Intanagonwiwat C,Govindan R,Estrin D.Directed diffusion for wireless sensor networking[J].ACM/IEEE Transactions on Networking,2002,11(1):2-16 被引量:1
  • 7Kernnedy J,Eberhart R C.Particle swarm optimization[C]//Proceeding of IEEE International Conference on Neutral Networks,Perth, Australia, 1995: 1942-1948. 被引量:1
  • 8Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the 6th International Symposium on Micro Machine and Human Science,Nagoya,Japan, 1995 : 39-43. 被引量:1
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 1998:69-73. 被引量:1
  • 10Kennedy J.The particle swarm:social adaptation of knowledge[C]// Proc IEEE Int Conf on Evolutionary Computation, 1997:303-308. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部