期刊文献+

基于小波系数能量及其方差的语音端点检测 被引量:1

Application of Wavelet Coefficient and its Variance in Detection Speech
下载PDF
导出
摘要 在语音识别系统中,端点检测技术对于系统的识别准确率来说是至关重要的。提出一基于小波子带能量和小波系数方差的语音端点检测算法。和其他传统的端点检测方法如短时能量、过零率方法等相比,该算法更加有效。计算机仿真结果证明了该算法更适合于语音端点检测,尤其是在低信噪比(SNR)条件下。 In the process of speech recognition,accurate endpoint detection is crucial for good speech recognition accuracy.In this paper,we propose a novel algorthm based on wavelet sub-band energy and wavelet coefficient variance.In the comparison of the algorthm to the other traditional method such as energy,ZCR etc., the algorthm proved effective.The SA is shown to be well suited for the detection of speech endpoint,especially for lowsignal-to-noise ratio(SNR).
出处 《微型电脑应用》 2009年第11期36-37,5,共2页 Microcomputer Applications
关键词 端点检测 小波 信噪比(SNR) Endpoint detection Wavelet SNR
  • 相关文献

参考文献6

  • 1徐静波,冉崇森.语音处理中自适应小波变换的应用[J].计算机工程与科学,2004,26(7):86-88. 被引量:8
  • 2KARRAYL, POLARD E. A wavelet denoising technique to improve endpoint detection in adverse conditions[C].// EUROSPEECH'99 Budapest : Kluwer Academic Publishers, 1999: 2379-2382. 被引量:1
  • 3DOWNIE T R, SILVERMAN B W. The discrete multiple wavelet transform and thresholding methods[J]. IEEE Trans on Signal ProcesSing, 1998,46(9) : 2558-2561. 被引量:1
  • 4BURLEYS , DARNELL M. Robust impulsive noise suppression using adaptive wavelet denoising[C] //Proc ICASSP'97 . Munich : IEEE ICASSPLibrary Series , 1997: 3417-3420. 被引量:1
  • 5Zhang Xueying, Zhao Zhefeng, Zhao Gaofeng. A Speech Endpoint Detection Method Based on Wavelet Coefficient Variance and Sub-Band Amplitude Variance[C]//. Innovative Computing, Information and Control, 2006 ,IEEE ICICIC'06,Page(s):83-86. 被引量:1
  • 6Janume P , Dosal M. Robust Speech Activity Detection Using LDA Applied to FF Parameters[C]//Proceeding of ICASSP2005, 1:557-572. 被引量:1

共引文献7

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部