期刊文献+

随机分布颗粒增强复合材料损伤萌生数值分析 被引量:1

Damage nucleation numerical analysis of randomly distributed particle reinforced composites
下载PDF
导出
摘要 针对随机分布颗粒增强金属基复合材料数值模拟问题进行研究,假设颗粒为椭球形,编制模拟多颗粒随机分布复合材料的程序,可模拟出颗粒大小、形状、方位随机的多颗粒增强复合材料,并对拉伸应力场、损伤萌生情况进行分析。 Numerical simulation of randomly distributed particle reinforced composite was studied, the program for simulating randomly distributed particle reinforced composite was finished, in which the particles were supposed to be ellipsoids with different shape and orientation. And then tensile stress fields of the composite were simulated and damage nucleation was analyzed.
出处 《兵器材料科学与工程》 CAS CSCD 2009年第6期13-16,共4页 Ordnance Material Science and Engineering
关键词 复合材料 随机分布模型 损伤模拟 应力场 composites randomly distributed model damage simulation stress field
  • 相关文献

参考文献12

二级参考文献32

  • 1陈佑清.反思学习:涵义、功能与过程[J].教育学术月刊,2010(5):5-9. 被引量:71
  • 2胡平 李运兴.数值弹塑性力学[M].长春:吉林科学技术出版社,1995.163. 被引量:3
  • 3[2]Houman Borouchaki, Paul Louis George. Aspectsof 2-delaunay mesh generation[J]. International Journal for Numerical Methods in Engineering, 1997,40:1957-1975. 被引量:1
  • 4[4]Poul Louis George, Eric Seveno. The advancingfront mesh generation method revisited[J]. International Journal for Numerical Methods in Engineering, 1994,37:1605-1619. 被引量:1
  • 5[5]Boender E. Reliable delaunay-based mesh genera-tion and mesh improvement[J]. Communication of Numerical Methods in Engineering,1994,10:773-783. 被引量:1
  • 6[6]Schutter G DE, Taerwe L. Random particle model for concrete based on delaunay triangulation[J]. Materials and Structure,1993,26:67-73. 被引量:1
  • 7Sternberg E, Sadowsky M A. On the Axisymmetric Problem of the Theory of Elasticity for an Infinite Region Containing Two Spherical Cavities[J]. J. Appl. Mech. 1952,19:19-27. 被引量:1
  • 8Arnaud Riccardi. Theoretic Study on the Nonclassical Inclusion Configuration in the Linear Elastic Isotrope[M]. National Polytechnic Institute of Grenoble. Dissertation for the Ph.D. 1998.75-77. 被引量:1
  • 9Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal inClusion and Related Problems[J]. Proc. Roy. Soc. 1957, A241, 376-396. 被引量:1
  • 10Eshelby J D. The Elastic Field Outside an Ellipsoidal Inclusion[J]. Proc. Roy. Soc. 1959. A252, 561-569. 被引量:1

共引文献61

同被引文献23

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部