期刊文献+

Effects of the cosmological constant on chaos in an FRW scalar field universe 被引量:2

Effects of the cosmological constant on chaos in an FRW scalar field universe
下载PDF
导出
摘要 The dependence of chaos on two parameters of the cosmological constant and the self-interacting coefficient in the imaginary phase space for a closed Friedman- Robertson-Walker (FRW) universe with a conformally coupled scalar field, as the full understanding of the dependence in real phase space, is investigated numerically. It is found that Poincar6 plots for the two parameters less than 1 are almost the same as those in the absence of the cosmological constant and self-interacting terms. For energies below the energy threshold of 0.5 for the imaginary problem in which there are no cosmological constant and self-interacting terms, an abrupt transition to chaos occurs when at least one of the two parameters is 1. However, the strength of the chaos does not increase for energies larger than the threshold. For other situations of the two parameters larger than 1, chaos is weaker, and even disappears as the two parameters increase. The dependence of chaos on two parameters of the cosmological constant and the self-interacting coefficient in the imaginary phase space for a closed Friedman- Robertson-Walker (FRW) universe with a conformally coupled scalar field, as the full understanding of the dependence in real phase space, is investigated numerically. It is found that Poincar6 plots for the two parameters less than 1 are almost the same as those in the absence of the cosmological constant and self-interacting terms. For energies below the energy threshold of 0.5 for the imaginary problem in which there are no cosmological constant and self-interacting terms, an abrupt transition to chaos occurs when at least one of the two parameters is 1. However, the strength of the chaos does not increase for energies larger than the threshold. For other situations of the two parameters larger than 1, chaos is weaker, and even disappears as the two parameters increase.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2009年第11期1185-1191,共7页 天文和天体物理学研究(英文版)
基金 supported by the Natural Science Foundation of China (Grant No. 10873007) supported by the Science Foundation of Jiangxi Education Bureau (GJJ09072) the Program for Innovative Research Teams of Nanchang University
关键词 COSMOLOGY cosmological parameters -- methods NUMERICAL cosmology cosmological parameters -- methods numerical
  • 相关文献

参考文献10

  • 1Beck,C. Phys.Rev.D . 2004 被引量:1
  • 2Calzetta,E,El Hasi,C. Classical and Quantum Gravity . 1993 被引量:1
  • 3Castagnino,M.A,Giacomini,H,Lara,L. Phys.Rev.D . 2001 被引量:1
  • 4Cornish,N.J,Shellard,E.P.S. Physics Review Letters . 1998 被引量:1
  • 5Gerakopoulos,G.L,Basilakos,S,Contopoulos,G. Phys.Rev.D . 2008 被引量:1
  • 6Gopakumar,A,Ko¨nigsdo¨rffer,C. Phys.Rev.D . 2005 被引量:1
  • 7Hartl,M.D,Buonanno,A. Phys.Rev.D . 2005 被引量:1
  • 8Imponente,G,Montani,G. Phys.Rev.D . 2001 被引量:1
  • 9Jors,S.E,Stuchi,T.J. Rhys.Rev.D . 2003 被引量:1
  • 10Kamenshchik,A.Y,Khalatnikov,I.M,Toporensky,A.V. Int.J.Mod.Phys.D . 1997 被引量:1

同被引文献7

  • 1Ma D Z,Wu X,Zhu J F.Velocity scaling method to correct individual Kepler energies[J].New Astronomy,2005,13:216-223. 被引量:1
  • 2Ma D Z,Wu J P,Zhang J F.Chaos from the ring string in a Gauss-Bonnet black hole in AdS5 space[ J].Physical Review D,2014,89:086011. 被引量:1
  • 3N acozy P E.The use of integrals in numerical integrations of the N-body problem[J].Astrophysics and Space Science,1971,14:40-51. 被引量:1
  • 4Wu X,Huang T Y,Wan X S,et al.Comparison among correction methods of individual kepler energies in n-body simulations [ J ].AJ,2007,133:2643-2653. 被引量:1
  • 5Froeschle C,Lega E.On the Structure of Symplectic Mappings.The fast Lyapunov indicator:a very sensitive tool[ J].Celestial Mechanics and Dy-namical Astronomy,2000,78:167-195. 被引量:1
  • 6Wu X,Huang T Y.Computation of Lyapunov exponents in general relativity [ J ].Physics Letters A,2003,313:77-81. 被引量:1
  • 7Simo C,Stuchi T J.Central stable/unstable manifolds and the destruction of KAM tori in the planar hill problem [ J ].Physica D,2000,140:1-32. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部