期刊文献+

基于复合金字塔模型的蛋白质二级结构预测系统 被引量:3

A novel protein secondary structure prediction system based on Compound Pyramid Model
原文传递
导出
摘要 利用预测系统方法,对蛋白质二级结构预测提出了一种逐步求精、多层递阶的预测系统模型,即复合金字塔模型.这种模型由4个独立协同的层面组成,通过智能接口有机融合了SAC,AAC,KDD*等源于KDTICM理论的模型和方法.模型整体贯穿物化属性与结构序列,采用因果细胞自动机选择有效物化属性,构造纯度较高的结构数据库作为训练数据源,利用领域知识与背景知识进行优化.本模型在数据集RS126及CB513分别取得83.06%与80.49%的Q3准确度,在对偏α/β型蛋白质的预测实验中,取得了93.12%的Q3准确度,并存在着进一步提高准确度的优化空间. To attack the urgent problem in bioinformatics, protein secondary structure prediction, a gradually enhanced, multi-layered prediction systematic model, Compound Pyramid Model, is proposed. This model is composed of four independent coordination's layers by intelligent interfaces, synthesizes several methods, such as SVM, KDD* process model and so on. In this model, which intersects the amino acid phy-chemical attributes and the structural information, the effective attributes are chosen by Causal Cellular Automata, and the highly pure structure database is constructed for training. The model obtained Q3 accuracy 83.06%, 80.49% separately on data sets RS126 and CB513. And to the alpha/beta protein's forecast experiment, the Q3 accuracy obtained is 93.12%.
出处 《科学通报》 EI CAS CSCD 北大核心 2009年第21期3311-3319,共9页 Chinese Science Bulletin
基金 国家自然科学基金(批准号:69835001 60675030和60875029) 教育部科技重点项目(批准号:[2000]175)资助
关键词 蛋白质二级结构预测 复合金字塔模型 预测系统方法 数据挖掘 Compound Pyramid Model protein secondary structure prediction Hybrid Prediction Model data mining
  • 相关文献

参考文献21

  • 1Wu X, Jain L, Wang j, et al. Data Mining in Bioinformatics. Berlin: Springer, 2005. 被引量:1
  • 2Haoudi A, Bensmail H. Bioinformatics and data mining in proteomics. Expert Rev Proteomics, 2006, 3:333-343. 被引量:1
  • 3LiJ Y, Wong L S, Yang Q. Data mining in Bioinformatics. IEEE Intelligent Systems, 2005, 20:16-18. 被引量:1
  • 4Kumar A, Nagadevara V. Development of hybrid classification methodology for mining skewed data sets-A case study of indian customs data. In: Proc. of Computer Systems and Applications, 2006. 584-591. 被引量:1
  • 5Preisach C, Schmidt-Thieme L. Relational Ensemble Classification. In: Proc. of ICDM2006 apos, 2006. 被引量:1
  • 6Lin H N, Chang J M, Wu K P, et al. HYPROSP Ⅱ-a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence. Bioinformatics, 2005, 21:3227-3233. 被引量:1
  • 7杨炳儒.基于内在认知机理的知识发现理论.北京:国防工业出版社,2004. 被引量:1
  • 8阎隆飞,孙之荣主编..蛋白质分子结构[M].北京:清华大学出版社,1999:334.
  • 9Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. J Mol Biol, 2001, 308:397-407. 被引量:1
  • 10Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol, 1993, 232:584-599. 被引量:1

二级参考文献10

  • 1生物信息学-基因和蛋白质分析的实用指南[M].李衍达,孙之荣,等译.北京:清华大学出版社,2000. 被引量:3
  • 2V.Vapnik,张学工.统计学习理论的本质[M].北京:清华大学出版社,2000 被引量:13
  • 3Bairoch A, Apweiler R. The SWISS - PORT protein sequence database and its supplement TrEMBL [ J ]. Nucl Acids Res, 2005,28 : 45 - 48. 被引量:1
  • 4边肇棋.模式识别(第二版)[M].北京:清华大学版社,2001. 被引量:1
  • 5Roobaert D,Van Hulle. View- based 3D object recognition with Support Vector Machines [ C ]. Madison : 1999 IEEE Workshop on Neural Networks for Signal Processing, 1999:77 - 84. 被引量:1
  • 6Atyia A, Chuanyi J. How initial conditions affect generalizationperformance in large networks [ J ]. IEEE Trans On Neural Networks, 1997,8 (2) :448 - 451. 被引量:1
  • 7Chen S, Cowan C F N. Orthogonal least squares learning algorithms for radial basis function networks[J ]. IEEE Trans. On Neural Networks, 1991,2 (2) :302 - 309. 被引量:1
  • 8李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108
  • 9李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302
  • 10李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71

共引文献4

同被引文献65

  • 1闫化军,傅彦,章毅,李毅超.神经网络方法预测蛋白质二级结构[J].计算机科学,2003,30(11):48-52. 被引量:4
  • 2王薇,赵冬,孙佳艺,王文化,成君,刘军,秦兰萍,刘飒,吴兆苏.中国11省市队列人群危险因素与不同类型心血管病发病危险的比较[J].中华心血管病杂志,2006,34(12):1133-1137. 被引量:119
  • 3Wang JJ,Ruotsalainen S,Moilanen L,et al.The metabolic syndrome predicts cardiovascular mortality:a 13-year follow-up study in elderly non-diabetic Finns.European Heart Journal,2007,28:857-864. 被引量:1
  • 4Williams KJ,Feig JE.Fisher EA.Rapid regression of atherosclerosis:insights from the clinical and experimental literature.Nat Clin Pract Cardiovasc Med,2008,5:91-102. 被引量:1
  • 5Williams K,Tchernof A,Hunt KJ,et al.Diabetes,abdominal adiposity,and atherogenic dyslipoproteinemia in women compared with men.Diabetes,2008,57:3289-3296. 被引量:1
  • 6Morgan DA,Thedens DR,Weiss R,et al.Mechanisms mediating renal sympathetic activation to leptin in obesity.Am J Physiol Regal Integr Comp Physiol,2008,295:R1730-R1736. 被引量:1
  • 7Martin SS,Qasim A,Reilly MP.Leptin resistance-a possible interface of inflammation and metabolism in obesity-related cardiovascular disease.J Am Coll Cardiol,2008,52:1201-1210. 被引量:1
  • 8Nakashima Y,Fujii H,Sumiyoshi S,et al.Early human atherosclerosis:accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration.Arterioscler Thromb Vasc Biol,2007,27:1159-1165. 被引量:1
  • 9Tabas I,Williams KJ,Boren J.Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications.Circulation,2007,116:1832-1844. 被引量:1
  • 10Klover PJ,Clementi AH,Mooney RA.Interleukin-6 depletion selectively improves hepatic insulin action in obesity.Endocrinology,2005,146:3417-3427. 被引量:1

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部