期刊文献+

调和映射约束下的超分辨率图像重建 被引量:2

Super-resolution Reconstruction Based on the Harmonic Mapping Constraint
下载PDF
导出
摘要 针对超分辨率图像重建过程中的正则化约束问题,本文提出采用p(x)调和映射进行正则化重建,根据超分辨率图像观察模型及正则约束,给出相应的能量泛函,并采用动态偏微分方程演化来求解能量泛函。该算法在重建的过程中能够根据图像空间特性自适应地采用不同的p(x)范数进行正则化,在图像的平滑区域采用近似2次范数进行正则化,而在图像的边缘区域采用近似1次范数进行正则化。实验结果均表明该算法不仅能有效地重建图像边缘,而且能有效地改善一次范数约束重建的分片常数效应。 To solve the ill-posed problem of the super-resolution image regularization reconstruction, an energy function based on p(x) harmonic mapping regularization and super-resointion image observed model was drawn. The super-resolution image was obtained by a dynamic partial differential equation. The algorithm could adopt the different norm adaptively during regularization reconstruction, which used near 2-norm in smooth region and near 1-norm in the image edge region. The experiments show the algorithm not only reconstructs the super-resolution image efficiently, but also improves the "blocky" effect while preserving the edges.
作者 袁建华
出处 《光电工程》 CAS CSCD 北大核心 2009年第11期96-99,共4页 Opto-Electronic Engineering
关键词 超分辨率 图像重建 病态问题 调和映射 super-resolution image reconstruction ill-posed problem harmonic mapping
  • 相关文献

参考文献10

  • 1Tsai R Y, Huang T S. Multi-frame image restoration and registration [M]// Advances in computer vision and image processing. Greenwich, Conn: JAIPress, 1984, 1: 317-339. 被引量:1
  • 2Stark H, Oskoui E High resolution image recovery from image-plane arrays, using convex projections [J]. J. Opt. Soc. Am. A(S0740-3232), 1989, 6: 1715-1726. 被引量:1
  • 3Irani M, Peleg S. Improving resolution by image registration [J]. CVGIP: Graphical models and image processing(S1049-9652), 1991, 53(3): 231-239. 被引量:1
  • 4Nhat N, Milanfar P, Golub G. A computationally efficient super-resolution image reconstruction algorithm [J]. IEEE Trans. Image Proeess(S1057-T149), 2001, 10(4): 573-583. 被引量:1
  • 5Elad M, Feuer A. Super-resolution restoration of an image sequence: Adaptive filtering approach [J]. IEEE Trans. Image Process(S1057-7149), 1999, 8(3): 387-395. 被引量:1
  • 6Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach [C]// International Conference onImageProcessing, ICIP2008, San Diego, California, USA, October 12-15, 2008: 641-644. 被引量:1
  • 7韩玉兵,吴乐南,张冬青.基于正则化处理的超分辨率重建[J].电子与信息学报,2007,29(7):1713-1716. 被引量:11
  • 8Blomgren P, Mulet P, Chan T, et al. Total Variation Image Restoration: Numerical Methods and Extensions[C]//Proceedings 1997 International Conference on Image Processing (ICIP '97), Washington, DC, USA, October 26-29, 1997, III: 384-387. 被引量:1
  • 9王大凯编著..图像处理的偏微分方程方法[M].北京:科学出版社,2008:224.
  • 10Keren D, Peleg S, Brada R. Image Sequence Enhancement Using Sub-Pixel Displacement[C]//CVPR '88, the Computer Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, June 5-9, 1988: 742-746. 被引量:1

二级参考文献11

  • 1GOLUB G H VAN LOAN C F 袁亚湘 等.矩阵计算[M].北京:科学出版社,2001.. 被引量:4
  • 2Tikhonov A N.Regularization of incorrectly posed problems.Soviet Mathematical Doklady,1963,4:1624-1627. 被引量:1
  • 3Aubert G and Kornprobst P.Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations.New York:Springer,2001,59-127. 被引量:1
  • 4Teboul S,Ferand L B,and Aubert G,et al..Variational approach for edge-preserving regularization using coupled PDE's.IEEE Trans.on Image Processing,1998,7(3):387-397. 被引量:1
  • 5Katsaggelos A,Biemond J,and Schafer R,et al.A regularized iterative image restoration algorithm.IEEE Trans.on Signal Processing,1991,39(4):914-929. 被引量:1
  • 6Banham M R and Katsaggelos A K.Digital image restoration.IEEE Signal Processing Magazine,1997.,14(2):24-41. 被引量:1
  • 7Golub G H,Heath M,and Wahba G.Generalized cross-validation as a method for choosing a good ridge parameter.Technometrics,1979,21(2):215-223. 被引量:1
  • 8Nguyen N,Milanfar P,and Golub G.Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.IEEE Trans.on Image Processing,2001,10(9):1299-1308. 被引量:1
  • 9Hanson P C.The L-curve and its use in the numerical treatment of inverse problem.http://www.imm.dtu.dk/documents/ftp/tr99/tr15_99.pdf,1998. 被引量:1
  • 10Bose N K,Lertrattanapanich S,and Koo J.Advances in superresolution using L-curve.The IEEE International Symposium on Circuits and Systems,Sydhey,Australia,May 2001,Vol2:433-436. 被引量:1

共引文献10

同被引文献19

  • 1黄华,樊鑫,齐春,朱世华.基于粒子滤波的人脸图像超分辨率重建方法[J].软件学报,2006,17(12):2529-2536. 被引量:3
  • 2BAKER S, KANADE T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2002, 24(9): 1167-1183. 被引量:1
  • 3PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine(S1053-5888), 2003, 20(3): 21-36. 被引量:1
  • 4FREEMAN W T, PASZTOR E C, Carmichael O T. Learning Low-Level Vision [J]. International Journal of Computer Vision(S0920-5691), 2000, 40: 25-47. 被引量:1
  • 5FREEMAN W T, JONES T R, PASZTOR E C. Example-Based Super-Resolution [J]. IEEE Computer Graphics and Applications(S0272-1716), 2002, 22(2): 56-65. 被引量:1
  • 6LIU C, SHUM H Y, ZHANG C S. A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model [C]//IEEE Computer Vision and Pattern Recognition (CVPR'01), Kauai, HI, USA, December 8-14, 2001. USA: IEEE Computer Society, 2001: 192-198. 被引量:1
  • 7HERTZMANN A, JACOBS C E, Oliver N, et al. Image Analogies [C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, August 12-17, 2001. NewYork: ACM Press, 2001: 327-339. 被引量:1
  • 8EFROS AA, FREEMAN W T. Image Quilting for Texture Synthesis and Transfer [C]//SIGGRAPH '01: Computer graphics and interactive techniques, Los Angeles, California, USA, August 12-17, 2001. New York: ACM Press, 2001: 341-346. 被引量:1
  • 9CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding [C]// IEEE Computer Vision and Pattern Recognition, Washington, D C, USA, June 27-July 2, 2001. USA: IEEE Computer Society, 2001: 275-282. 被引量:1
  • 10YANG J C, WRIGHT J, HUANG T, et al. Image Super-Resolution Via Sparse Representation [J]. Image Processing, IEEE Transactions on(s1057-7149), 2010, 19(11): 2861-2873. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部