期刊文献+

用于关联规则挖掘的一种基于小生境技术的GEP算法

Novel Algorithm GEP Based on Niche Applied to Association Rules Mining
下载PDF
导出
摘要 为了提高关联规则挖掘算法处理大数据集的能力,在基因表达式编程进化算法(Gene Expression Program-ming)的基础上,提出了一个新的挖掘强关联规则的算法框架。主要贡献在于提出并实现了基于小生境技术的基因表达式编程进化算法NGEP,以用于挖掘关联规则。NEGP算法首先进行小生境演化,融合小生境并剔除同构的优秀个体,然后对小生境解进行笛卡儿交叉,以产生更好的结果。实验结果表明,与同类优秀的算法对比,NGEP算法的种群多样性与精确度都有很好的结果,并且在提取有效规则的效率上也有较大的提高。 In order to advance the performance of association rules mining algorithm when disposing big dataset,a novel GEP based on Niche (NGEP) was presented to solve the probleme. The procedure of NGEP began with the niche evolution and then fused some of the sub-niches according to the similarity of best individuals. Then Cartesian product was nested in the kernel set of niches to generate better outcomes. The experimental results show that our algorithm performs better than the other similar evolutionary algorithm in terms of diversity of population and precision; besides, it can discover more association rules.
出处 《计算机科学》 CSCD 北大核心 2009年第11期224-227,共4页 Computer Science
基金 国家自然科学基金资助项目(No.60603074和No.60603075) 国家973重大研究项目(2004CB318203) 中国地质大学(武汉)优秀青年教师资助计划项目(CUGQNL44)资助
关键词 数据挖掘 关联规则 基因表达式编程 小生境 Data mining, Association rule,Gene expression programming, Niche
  • 相关文献

参考文献12

  • 1Nevcihan D. An application of apriori algorithm on a diabetic database[C] //Conference(KES 2005) ,Proceedings. 2005 : 398-404. 被引量:1
  • 2Cristian A, Mitica C. Grid implementation of the apriori algorithm[J]. Advances in Engineering Software, 2007,8(5) : 295-300. 被引量:1
  • 3Freitas A A. A survey of evolutionary algorithms for data mining and knowledge discovery[M]//Ghosh A, Tsutsui S, eds. Advances in Evolutionary Computing. New York: Springer-Verlag, 2003 : 819-845. 被引量:1
  • 4Romeo W,Freitas A A,Gimenes I M de S. Discovering interesting knowledge from a ,science and technology database with a genetic algorithr[J]. Applied Soft Computing, 2004,4 ( 2 ) : 121-137. 被引量:1
  • 5沈国强,覃征.一种新的多维关联规则挖掘算法[J].小型微型计算机系统,2006,27(2):291-294. 被引量:18
  • 6Nodaet E A. Discovering-interesting prediction rules with a genetic algorithm[C]//Proceedings of the Congress on Evolutionary Computation. 1999 : 1322-1329. 被引量:1
  • 7Freitas A A. Data Mining and Knowledge Discovery with Evolutionary Algorithms[M]. New York:Springer-Verlag, 2002. 被引量:1
  • 8Mutation F C. Transposition, and recombination:An analysis of the evolutionary dynamics [A] //Proceedings of the 6th Joint Conference on Information Sciences, 4th International Workshop on Frontiers in Evolutionary Algorithms [C]. 2002:614-617. 被引量:1
  • 9Ferreira C. Genetic representation and genetic neutrality in gene expression programming [J]. Advances in Complex Systems, 2002,5(4):389-408. 被引量:1
  • 10邹晓峰,陆建江,宋自林.基于模糊分类关联规则的分类系统[J].计算机研究与发展,2003,40(5):651-656. 被引量:19

二级参考文献13

  • 1B Lent, A Swami, J Widom. Clustering association rules. In:AlexGray, Per-Ake Larson eds. Proc of the 13th Int'l Conf on Data Engineering. Birmingham, England: IEEE Computer Society, 1997. 220-231. 被引量:1
  • 2B Liu, W Hsu, Y Ma. Integrating classification and association rule mining. In: R Agrawal, P E Stolorz, G Piatetsky-Shapiro eds. Proc of the 4th Int'l Conf on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 80-86. 被引量:1
  • 3G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In, S Chaudhuri, D Modigan eds. Proc of the 5th Int' 1 Conf on Knowledge Discovery and Data Mining. San Diego, CA: ACM Press, 1999. 43-52. 被引量:1
  • 4J Li, G Dong, K Rmxmmohtmarao. Making use of the most expressive jumping emerging patterns for classification. In: Takao Terano, Huan Liu, Arbee L P Chen eds. Proc of the 4th Pacific-Asia Conf on Knowledge Discovery mad Data Mining. Kyoto,Japan: Springer, 2000. 220-232. 被引量:1
  • 5Chan Man Kuok, Aria Fu, Man Hon Wong. Mining fuzzy association rules in database. SIGMOD Record, 1998, 27(1): 41-46. 被引量:1
  • 6R J Hathaway, J W Davenport, J C Bezdek. Relational dual of the c-means algorithms. Pattern Recognition, 1989, 22 (2) : 205-212. 被引量:1
  • 7R Agrawal, R Srikant. Fast algorithms for mining association rules. In: J B Bocca, M Jarke, C Zaniolo eds. Proc of the 20th Int'l Conf on Very Large Databases. Santiago, Chile: Morgan Kaufmann, 1994. 487-499. 被引量:1
  • 8L I Kuncheva. How good are fuzzy if-then classifiers? IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000,30(4):501-509. 被引量:1
  • 9O Cordon, F Herrera. A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples.Imernational Journal of Approximate Reasoning, 1997, 17(4): 369-407. 被引量:1
  • 10Z Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. New York: Springer-Verlag, 1994. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部