期刊文献+

基于关联规则的分布式通信网告警相关性研究 被引量:7

Efficient Distributed Mining Algorithm for Alarm Correlation in Communication Networks
下载PDF
导出
摘要 描述了基于数据挖掘的通信网告警相关性分析。在分布式数据库中直接运用序列算法效率很低,因为这需要大量的额外通信。为此提出了一种有效的分布式关联规则挖掘算法——EDMA,它通过局部剪枝与全局剪枝来最小化候选项集数目和通信量。在局部站点上运用先进的压缩关联矩阵CMatrix统计局部项集支持数。此外还利用项目剪枝与交易剪枝共同来减少扫描时间。最后仿真验证了EDMA比其他经典分布式算法有更高的运算效率、更低的通信开销以及更好的可扩展性。 This paper described the alarm correlation in communication networks based on data mining. A direct application of sequential algorithms to distributed databases is not effective, because it requires a large amount of communication overhead. An efficient algorithm-EDMA was proposed. It minimized the number of candidate sets and exchanged messages by local and global pruning. In local sites, it runs the application based on the improved algorithm-CMatrix, which is used to calculate local support counts. Our solution also reduced the size of average transactions and datasets that leads to reduction of scan time. The performance study shows that EDMA has superior running efficiency, lower communication cost and stronger scalability than direct application of a sequential algorithm in distributed databases.
作者 吴简 李兴明
出处 《计算机科学》 CSCD 北大核心 2009年第11期204-207,212,共5页 Computer Science
基金 国家自然科学基金(60572091)资助
关键词 网络差错管理 分布式关联规则挖掘 频繁项集 压缩关联矩阵 Network fault management, Association rules distributed mining, Frequent itemsets, Compressed association matrix
  • 相关文献

参考文献12

  • 1王能斌编著..数据库系统原理[M].北京:电子工业出版社,2000:456.
  • 2Agrawal R,Imielinski T,Swami A. Mining association rules between sets of items in large databases[A]//Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Washington, USA, 1993 : 207-216. 被引量:1
  • 3Cheung D W, et al. A Fast Distributed Algorithm for Mining Association Rules[C]// Proc. Parallel and Distributed Information Systems. IEEE CS Press, 1996 : 31-42. 被引量:1
  • 4Zaki M J, Pin Y. Introduction: Recent Developments in Parallel and Distributed Data Mining[J]. J. Distributed and Parallel Databases, 2002,11 (2) : 123-127. 被引量:1
  • 5Cheung D W, et al. Efficient Mining of Association Rules in Distributed Databases[J]. IEEE Trans. Knowledge and Data Eng. , 1996,8(6) :911-922. 被引量:1
  • 6Schuster A, Wolff R. Communication-efficient Distributed Mining of Association Rules[C]//Proc. ACM SIGMOD Int ' l Conf. Management of Data. ACM Press, 2001:473-484. 被引量:1
  • 7Ashrafi M Z. Monash University ODAM: An Optimized Distributed Association Rule Mining Algorithm, IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 2004[J]. IEEE Computer Society,2004,5 (3). 被引量:1
  • 8Ma Y, Liu B, Wong C K. Web for Data Mining: Organizing and Interpreting the Discovered Rules Using the Web[J]. SIGKDD Explorations, New York: ACM Press, 2000,2 (1) : 16-23. 被引量:1
  • 9Kimball R, Ross M. The Data Warehouse Toolkit, The Complete Guide to Dimensional Modeling. 2nd edn[M]. John Wiley Sons, New York, 2002. 被引量:1
  • 10Nestorov S, Jukic N. Ad - Hoc Association - Rule Mining within the Data Warehouse[C]// Abstract Proc. Hawaii Int. Conf. on System Sciences (HICSS'03 ). IEEE Computer Society Press (2003) 232. http://people. cs. uchicago. edu/- evtimov/pubs/ hicss03. pdf. 被引量:1

同被引文献38

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部