期刊文献+

基于模糊控制的人工神经网络模拟在土质边坡安全预测中的应用 被引量:10

Artificial neural network simulation on prediction of clay slope stability based on fuzzy controller
下载PDF
导出
摘要 从最优化角度出发,用神经网络解决模糊控制系统的规则提取问题,给出可靠的基于BP算法的可靠神经网络模拟过程,对模糊子集个数的选取与系统复杂性、精确性之间的关系进行讨论。为获得边坡复杂工况下的安全特征,建立基于模糊控制的人工神经网络边坡安全预测模型,由大量样本进行网络训练。研究结果表明:所建立的模型预测精度较高,且实用易行;边坡的坡度、内摩擦角、凝聚力对边坡的安全系数影响较大;该预测模型可用于处理普遍存在的不确定性、非线性复杂工程问题;通过模糊控制调整模型,可对不同工程对象进行较精确的模拟分析。 Based on optimal consideration,the problem of abstracting rule of a fuzzy control system by introducing neural network was solved.A reliable learning procedure for the neural network based on BP algorithm was suggested and the relationship among the number of fuzzy sets and the complexity and accuracy of fuzzy controller was investigated.Furthermore,in order to obtain safety characteristics of slope with complicated working behaviours,the prediction of the slope stability was presented on the foregoing artificial neural network under fuzzy controller,and many samples were collected to carry on the network training.The results show that the prediction models are accurate and easy to operate.The safety factor is affected largely by the parameters of the slope stability such as the slope gradient,rubbing angle inside and coagulate force.Theoretical model can be used to study the uncertainty and nonlinearity in engineering.With the help of fuzzy controlling system which is applicable for model's adjustment,it is of convenience to simulate the working behavior of diverse cases accurately.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期1381-1387,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50878212)
关键词 模糊控制系统 神经网络 模糊子集 预测 边坡稳定 fuzzy control system neural network fuzzy sets prediction slope stability
  • 相关文献

参考文献16

二级参考文献17

  • 1刘霞,王焕勇,刘铁男.自适应多层小波神经网络建模方法[J].大庆石油学院学报,2006,30(3):102-104. 被引量:1
  • 2段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977. 被引量:74
  • 3邢化玲,高社生,唐士杰.基于小波神经网络的滤波器设计方法[J].计算机测量与控制,2007,15(5):660-661. 被引量:2
  • 4孙增圻 张再兴 邓志东 等.智能控制理论与技术[M].北京:清华大学出版社,2002.. 被引量:29
  • 5Spencer B F, Soong Jr T T. New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibration in the USA [C]// Proceedings of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures.Cheju, Korea, 1999. 被引量:1
  • 6Ohtori Y, Christenson R E, Spencer B F Jr, Dyke S J. Control problems for seismically excited nonlinear building [J]. Journal of Engineering Mechanics, 2004, 130(4): 366--387. 被引量:1
  • 7Yoshida Osamu, Dyke Shirley J. Seismic control of a nonlinear benchmark building using smart dampers [J]. Journal of Engineering Mechanics, 2004, 130(4): 386-- 392. 被引量:1
  • 8Mohammed Al-Dawod, Bijan Samali, Kenny Kwok, Fazel Naghdy. Fuzzy controller for seismically excited nonlinear buildings [J]. Jounal of Engineering Mechanics, 2004, 130(4): 407--415. 被引量:1
  • 9Yi F, Dyke S J, Caicedo J M, Carlson J D. Experimental verification of multi-input seismic control strategies for smart dampers [J]. Journal of Engineering Mechanics, 2001, 127(11): 1152--1164. 被引量:1
  • 10Kim Ju - Tae, Jung Hyung - Jo, Lee in - Won. Opti2 mal structural control using neural networks[J]. Jonmal of Engineering Mechanics, 2001,126 (2):201-205. 被引量:1

共引文献170

同被引文献139

引证文献10

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部