期刊文献+

融合先验知识的自适应行人跟踪算法 被引量:9

An Adaptive Pedestrian Tracking Algorithm with Prior Knowledge
原文传递
导出
摘要 在实际监控场合中,行人的运动有着诸多不确定性,这些会对现有的跟踪算法产生干扰,从而造成跟踪丢失.基于此,文中提出一种将行人检测的先验知识融入到跟踪模型自学习过程的行人跟踪算法.首先通过离线训练,得到具有较强区分能力的子分类器集,这些子分类器蕴含了对于行人的先验知识.在跟踪过程中,使用online boosting算法从离线训练的子分类器集中学习并更新强分类器,对被跟踪行人进行动态建模.实验结果表明,该算法有效缓解算法自适应性与"漂移"之间的矛盾,能够在真实监控场合下跟踪具有复杂运动的行人. In actual surveillance conditions, many uncertainties exist in pedestrian movement. These movements may disturb the current tracking algorithms and result in tracking lost. An adaptive pedestrian tracking algorithm is proposed. In this algorithm, the prior knowledge of pedestrian detection is embedded into the self-learning process of object model. Firstly, offline training is performed to get a set of sub-classifiers with strong discriminability and prior knowledge of the pedestrians. Then, online boosting algorithm is used for learning and updating the pedestrian "s dynamic model from the offline trained sub classifier set. Experimental results show that the proposed method efficiently relieves the conflict between adaptation and drifting, and tracks pedestrian with various uncertain movement under the actual surveillance conditions.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期704-708,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金广东联合基金资助项目(No.U0835002)
关键词 行人跟踪 先验知识 在线学习 Pedestrian Tracking, Prior Knowledge, Online Learning
  • 相关文献

参考文献14

  • 1Hager G D, Belhumeu P N. Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(10) : 1025 -1039. 被引量:1
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564 -577. 被引量:1
  • 3Zhao Tao, Nevatia R. Tracking Muhiple Humans in Complex Situations. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1208 - 1221. 被引量:1
  • 4Deutscher J, Blake A, Reid I. Articulated Body Motion Capture by Annealed Particle Filtering// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, Ⅱ: 2126 -2133. 被引量:1
  • 5Avidan S. Ensemble Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261 -271. 被引量:1
  • 6Grabner H, Bischof H. On-line Boosting and Vision// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006 : I : 260 - 267. 被引量:1
  • 7Javed O, Ali S, Shah M. On-line Detection and Classification of Moving Objects Using Progressively Improving Detectors // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I : 696 -701. 被引量:1
  • 8Wu Bo, Nevatia R. Improving Part Based Object Detection by Unsupervised, On-line Boosting// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007 : 1 -8. 被引量:1
  • 9Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I : 886 - 893. 被引量:1
  • 10Wu Bo, Nevatia R. Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors// Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, I : 90 -97. 被引量:1

同被引文献114

  • 1李书进,李文华.基于自适应卡尔曼滤波的时变结构参数估计[J].广西大学学报(自然科学版),2004,29(2):146-149. 被引量:10
  • 2Zha Yufei Bi Duyan.Adaptive learning algorithm based on mixture Gaussian background[J].Journal of Systems Engineering and Electronics,2007,18(2):369-376. 被引量:9
  • 3COLLINS R, YANX L, LEORDEANU M.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1631-1643. 被引量:1
  • 4AVIDAN S.Ensemble tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):261-271. 被引量:1
  • 5GRABNER H, GRABNER M, BISCHOF H.Real-time tracking via on-line boosting .Proceedings of British Machine Vision Conference, 2006,1:47-56. 被引量:1
  • 6TAKAYOSHI Y, HIRONOBU F, SHIHONG L, et al..Human tracking based on soft decision feature and online real boosting .19th International Conference on Pattern Recognition,2008:1-4. 被引量:1
  • 7GRABNER H, LEISTNER C, BISCHOF H.Semi-supervised on-line boosting for robust tracking .Proceedings of Europear Conference on Computer Vision, 2008:234-247. 被引量:1
  • 8GODEC M, GRABNER H, LEISTNER C, et al..Speeding up semi-supervised on-line boosting for tracking .Proceedings of the Austrian Association for Pattern Recognition,2009:1-12. 被引量:1
  • 9TANG F, BRENNAN S, ZHAO Q, et al..Co-tracking using semi-supervised support Vector Machines .Computer Vision and Pattern Recognition, IEEE Computer Society Conference,2009:1-8. 被引量:1
  • 10BABENKO B, MING-HSUAN Y, BELONGIE S.Visual tracking with online multiple instance learning .Computer Vision and Pattern Recognition, IEEE Computer Society Conference,2009:983-990. 被引量:1

引证文献9

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部