期刊文献+

初始状态对Ti600钛合金热变形的影响 被引量:5

Effect of Initial Condition on Hot Deformation Behavior of Titanium Alloy
下载PDF
导出
摘要 在Gleeble-1500热模拟试验机上采用等温压缩试验的方法研究了Ti600合金2种状态下的热塑性变形行为,获得了合金在温度为800~1100℃,变形速率为0.001~10s-1范围内的流变应力数据,并计算了合金2种状态条件下的变形激活能Q。结果表明:不同的初始状态对合金的热变形行为有影响,经过热加工处理后的合金变形激活能比铸态条件下的变形激活能高;合金在2种状态下的变形激活能分别为:在(α+β)相区为475和644kJ·mol-1,在β区为101和239kJ·mol-1。在(α+β)相区动态再结晶是合金的主要软化机制,而在β区软化机制则以动态回复为主。 Hot deformation behavior of two different microstructures of Ti600 alloy was studied by isothermal compression test conduced on the Gleeble-1500 heat stimulation machine. Flow stress data at various temperature from 800~1100 ℃ and strain rates from 0.001 s-1 to 10 s-1 were obtained, the deformation activation energy Q of two different microstructures was calculated. The results show that the initial microstructures affect hot deformation behavior of this alloy, the heat process treated alloy has higher activation energy than the untreated alloy; the deformation activation energy of two different microstructures is 475 kJ·mol^-1 and 644 kJ·mol^-1 in (α+β) phase region, 101 kJ·mol^-1 and 239 kJ·mol^-1 in β phase region. The flow stress curves and deformation activation energy reveal that the main softening mechanism is dynamic recrystallization in (α+β) phase field, and dynamic recovery in β phase region.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第A04期622-624,共3页 Rare Metal Materials and Engineering
基金 国家重点自然科学基金项目(50434030)资助 国家重点基础研究发展计划"973"项目(2007CB613805 2007CB613807)资助
关键词 高温钛合金 热变形 变形激活能 high temperature titanium alloy hot deformation activation energy
  • 相关文献

参考文献10

二级参考文献39

  • 1[1]Anon. Titanium alloys for aerospace[J] . Advanced Materials & Processes, 1999, 155(3): 39. 被引量:1
  • 2[2]Lineberger, Lane. Titanium aerospace alloys [J] . Advanced Materials & Processes, 1998, 153(5):45. 被引量:1
  • 3[3]The F - 22 Story: Building Affordability [J]. Flight InternationalSupplement, 1997, (4) :9. 被引量:1
  • 4[4]Yoshimitsu okazaki, Yoshimasa Ito. Corrosion resistance and corro sion fatigue strength of new titanium alloys for medical implants without V and Al[J]. J. Materials Science and Engineering A, 1996, 213:138. 被引量:1
  • 5[5]Niinomi, Mitsuo. Recent titanium R&D for biomedical applications inJapan [J] .JOM, 1999, 51(6) :32. 被引量:1
  • 6[6]Kathy Wang. The use of titanium for medical applications in USA[J] .J. Materials Science and Engineering A, 1996, 213 : 134. 被引量:1
  • 7[7]Sherman A M, Sommer C J, Froes F H. Use of titanium in produc tion automobiles: potential and challenges [J]. JOM, 1997, 49 ( 5 ):38. 被引量:1
  • 8[8]Shira, Chet, Froes F H. Titanium golf clubs. TMS Annual Meeting, Sponsored by: TMS Minerals [J]. Metals & Materials Soc (TMS), 1998, Feb. 16 - 19: 331. 被引量:1
  • 9[9]Vandermark, Robert. Opportunities for the titanium industry in bicy cles and wheelchairs[J]. JOM, 1997, 49(6):24. 被引量:1
  • 10[10]Yamamoto, Yoshitaka. Development of titanium products for consumer, sports and leisure goods [J]. Research and Development Kobe Steel Engineering Reports, 1999, 68. 被引量:1

共引文献262

同被引文献65

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部