摘要
功能梯度材料(FGMs)的优越性在于既能有效地抗腐蚀、抗辐射和抗高温,同时又能极大地缓解热应力和残余应力。笔者根据非局部理论对含反平面裂纹无限大功能梯度材料板在冲击载荷作用的问题进行研究。假设材料的剪切模量和密度为指数形式模型,泊松比为常数,利用拉普拉斯和傅立叶变换将混合边界值问题简化为对偶积分方程,并得到裂纹尖端应力场。
The functionally graded materials (FGMs) exhibit advantages that the materials give effective resistance to corrosion, radiation and high temperatures, accompanied by a significant relaxation of the residual and thermal stresses. This paper invesigates an infinite cracked plate subjected to anti-plane shear impact loading by using non-local linear elasticity theory. The shear modulus and mass density of FGMs are assumed to be of exponential form and the Poisson's ratio is assumed to be constant. The mixed boundary value problem is reduced to a pair dual integral equations by the use of Laplace and Fourier integral transform method. The crack-tip stress fields in FGMs are obtained.
出处
《黑龙江科技学院学报》
CAS
2009年第5期398-400,共3页
Journal of Heilongjiang Institute of Science and Technology
基金
福建省科技厅资助省属高校项目(2008F5005)
福建工程学院科研发展基金资助项目(GY-Z0747)
关键词
功能梯度材料
裂纹
积分变换
对偶积分方程
应力场
functionally graded materials
crack
integral transforms
dual integral equations
stress fields