期刊文献+

网络自相似流量预测及拥塞控制研究 被引量:7

Study on Self-Similarity Traffic Prediction and Network Congestion Control
下载PDF
导出
摘要 在研究自相似网络流量Hurst参数与相关长度之间的定量关系基础上,提出了基于小波变换的自回归预测的网络端到端流量预测方法,并利用预测值改进TCP拥塞控制算法。理论分析和仿真结果表明,基于小波变换的预测方法在网络流量预测方面比传统的时域方法有更高的精度。改进的拥塞控制算法在无线/有线混合网络环境中,相对于TCPW和Reno具有明显的性能改善。 After studying the relation between time series Hurst of network traffic and correlation length, an AR traffic prediction method in Wavelet domain was proposed, and then a novel network congestion control scheme was brought forward based on traffic prediction. Analysis and simulation show that Waveletdomain AR model gets good performance in high burstness traffic prediction and the performance of this congestion control scheme is better than TCPW and Reno in wired/wireless network.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第21期6935-6939,共5页 Journal of System Simulation
基金 国家863计划(重点)项目(2008AA062200)
关键词 拥基控制 流量预测 自相似 小波变换 IP网络 congestion control traffic prediction self-similarity Wavelet IP networks
  • 相关文献

参考文献2

二级参考文献10

  • 1周汉良 范玉妹.数学规划及其应用[M].北京:冶金工业出版社,1999.. 被引量:1
  • 2PAXSON V, FLOYD S. Wide-area traffic: the failure of Poisson modeling[J]. IEEE/ACM Transactions on Networking, 1995, 3(3):226-244. 被引量:1
  • 3http://www.caida.org/analysis/AIX/plen_hist/index.xml, Jun 14, 2002[EB/OL]. 被引量:1
  • 4HLAVACS H, KOTSIS G, STEINKELLER C. Traffic Source Modeling[R]. University of Vienna: Technical Report No. TR-99101,Institute for Appl Comp Science and Inf Systems. 被引量:1
  • 5WILLINGER W, TAQQU M S, SHERMAN R, et al. Self-similarity through high-variability: statistical analysis of ethernet LAN traffic at the source level[J]. IEEE/ACM Transactions on Networking, 1997,5(1): 71-86. 被引量:1
  • 6POPESCU A Traffic self-similarity[A]. The IEEE International Conference on Telecommunications, ICT2001 [C]. Bucharest, Romania,2001. 被引量:1
  • 7GREINER M, JOBMANN M, LIPSKY L. The importance of power-tail distributions for modeling queuing systems[J]. Operations Research, 1999, 47(2):313-326. 被引量:1
  • 8HATEM J E. Comparison of Buffer Usage Utilizing Single and Multiple Servers in Network Systems with Power-Tail Distribution[D].University of Connecticut, Department of Computer Science and Engineering, Storrs, 1997. 被引量:1
  • 9ROSARIO G, GARROPPO, STEFANO G. On the implications of the OFF periods distribution in two-state traffic models[J]. IEEE Communications Letters, 1999, 3(7):220-222. 被引量:1
  • 10ULANOVS P, PETERSSONS E. Modeling methods of self-similar traffic for network performance evaluation[A]. Scientific Proceedings of Riga Technical University, Series 7, Telecommunications and Electronics[C]. 2002.86-96. 被引量:1

共引文献14

同被引文献55

  • 1龙图景,孙政顺,李春文,姜培刚,刘金华.一种新的网络业务流的多重分形小波模型[J].计算机学报,2004,27(8):1074-1082. 被引量:13
  • 2宋丽华,陈鸣,仇小锋.网络流量特征对排队性能影响的仿真分析与比较[J].系统仿真学报,2005,17(1):25-28. 被引量:5
  • 3郭联志.园区网络管理方法研究[J].福建电脑,2006,22(2):4-5. 被引量:2
  • 4王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 5Patrick Seeling,Martin Reisslem,Beshan Kulapala.Network performance evaluation using frame size and quality traces of single-layer and two-layer video:A tutorial[J].IEEE Communications Surveys and Tutorials,2004,6(2):58-78. 被引量:1
  • 6Chen S Y.Grey neural network forecasting for traffic flow[J]. Journal of Southeast University (Natural Science Edition), 2004,34(4):541-544. 被引量:1
  • 7Goerishankar S.A time series modeling and prediction of wireless network traffic [J]. Georgian Electronic Scientific Joural: Computer Science and Telecommunications.2008,2(16):40-53. 被引量:1
  • 8Huifang F, Yantai S.Study on network traffic prediction techniques[C].Proc of Intentional Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 2005:1041-1044. 被引量:1
  • 9JIANG Jun, PAPAVASSILIOU Symeon. Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies [J]. Computer Communications, 2006,29(10) : 1627-1638. 被引量:1
  • 10CHEN Yuehui, YANG Bin, MENG Qingfang. Small-time scale network traffic prediction based on flexible neural tree[J]. Applied Soft Computing, 2012, 12( 1 ) :274-279. 被引量:1

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部