期刊文献+

一类二阶常微分方程奇异边值问题的数值方法

A NUMERICAL METHOD FOR A CLASS OF SECOND ORDER DIFFERENTIAL EQUATIONS WITH SINGULAR BOUNDARY CONDITION
下载PDF
导出
摘要 本文讨论如下形式的二阶微分方程y″(x)+P(x)y′(x)+Q(x)y(x)=R(x),0<x<1,y′(0)=A,y(1)=B,其中A,B为常数,系数P(x),Q(x)在x=0处有奇性。考虑到系数在x=0处有奇性,无法用一般差分格式进行计算,故将区间(0,1]划分成(0,δ]和[δ,1],(δ靠近奇点)。在(0,δ]区间寻求级数形式的解,继而确定y(δ)值。在[δ,1]区间上用离散不变嵌入法寻求该问题的差分格式,并给出了离散形式下解yi的计数步骤,最后给出数值例子并与真解进行了比较,得到了结点误差|yi-y(xi)|≤10-4。 In this paper, the second order ordinary differential equation y″(x) +P(x)y′(x) +Q (x)y (x) = R (x), with singularity at x=0 is discussed, and 0<x<1, y′(0) = A,y(1 ) = B within the above, A and B are constant, and P(x),Q(x) as coefficient. Ordinary difference scheme can not be used for solving this kind of problem. So the interval (0, 1] is divided into two parts (0,δ] and [δ, 1], and δ is near the singularity. By employing the series expansion on the interval (0,δ], y(δ) is obtained, then the discrete invariant imbedding method is described to solve the problem over the reduced interval [δ, 1]. Finally a numerical example is given and compared with the precision solution, and the node error|yi-y(xi)|≤10-4 is gained.
出处 《上海水产大学学报》 CSCD 1998年第3期206-210,共5页 Journal of Shanghai Fisheries University
关键词 离散不变嵌入法 奇异边值问题 二阶 常微分方程 singular boundary condition, discrete invariant imbedding method, iterative method, node error
  • 相关文献

参考文献5

  • 1Chawla M M, Shivkumar P N. 1987. On the existance of solution a class singular two-point boundary value problems. J Comp App Math, 19:379-388. 被引量:1
  • 2Jamet P. 1980. On the convergence of finite difference approximations to one dimensional singular boundary value problems. Numer Math, 14:355-378. 被引量:1
  • 3Keller H B. 1980. Numerical solution of two point boundary value problems. SIAM A Appl Math, 24:213-240. 被引量:1
  • 4Kenneth Eriksson, Yi-Yong Nie. 1987. Math of computation volume 49: 167-186. 被引量:1
  • 5Russell R D, Shampine F. 1975. Numerical Methods for Singular boundary value problems, SIAM J Numer Anal, 12:13-35. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部