期刊文献+

具有反馈控制的N种群非自治LOTKA-VOLTERRA竞争系统的概周期解的存在性

Existence Of Almost Periodic Solutions of Nonautonomous N-Species LOTKA-VOLTERRA Competitive Systems with Feedback Controls
原文传递
导出
摘要 讨论了具有反馈控制的N种群非自治LOTKA-VOLTERRA竞争系统,获得了该系统概周期解的存在性和全局稳定性,改进了概周期解研究的方法. Nonautonomous n-species lotka-volterra competitive systems with feedback controls is studied. We derive some sufficient conditions that guarantee the existence and global stability of almost periodic solutions. The methods studying almost periodic solutions are improved.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第21期134-139,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(10371006) 山西省自然科学基金(20051010)
关键词 非自治 反馈控制 概周期 nonautonomous feedback controls almost periodic
  • 相关文献

参考文献1

二级参考文献22

  • 1Yuan R., Hong J. L., The existence of almost periodic solution of a population equation with delay, Appl. Anal., 1996, 61: 45-52. 被引量:1
  • 2Berebetoglu H., Gyori I., Global asymptotic stability in a nonautonomous Lotka-Volterra type systems with infinite delay, J. Meth. Anal. Appl., 1997, 210: 279-291. 被引量:1
  • 3Teng Z., Yu Y., Some new results of nonautonomous Lotka-Volterra competitive systems with delays, J. Math. Anal. Appl., 2000, 241: 254-275. 被引量:1
  • 4Teng Z., On the positive almost periodic solutions of a class of Lotka-Volterra type systems with delays, J.Math. Anal. Appl., 2000, 249: 433-444. 被引量:1
  • 5Cao Y., Fan J. -P., Gard T. C., Uniform persistence for population interaction models with time delay, Applic. Anal., 1993, 51: 197-210. 被引量:1
  • 6Cao Y., Gard Y. C., Uniform persistence for population models with time delay using multiple liapunov functions, Differential Integral Equations, 1993, 6: 883-898. 被引量:1
  • 7Freedman H. I., Ruan S., Uniform persistence in functional differential equations, J. Differential Equations, 1995, 115: 173-192. 被引量:1
  • 8He X. Z., Gopalsamy K., Persistence, stability and level crossings in an integrodifferential system, J. Math. Biol., 1994, 32: 395-426. 被引量:1
  • 9Kuang Y., Delay Differential Equations with Application in Population Dynamics, Boston: Academic Press, 1993. 被引量:1
  • 10Tang B., Kuang Y., Permanence in kolmogorov type system of nonautonomous functional differential equa- tions, J. Math. Anal. Appl., 1996, 197: 427-447. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部