摘要
讨论P-有界分配格的理想集代数与剩余格的关系。证明了在适当选取蕴涵算子及相应的剩余算子之后,P-有界分配格的理想集代数就成为剩余格。定义了生成理想,并借助格论上的原子定义了P-有界分配格,然后讨论了它的一些性质,得到了一些好的结论。最后证明了P-有界分配格的理想集代数也是MV代数与R0代数。
The relation between ideal sets algebra of P-finite distributive lattice and residual lattice is studied. It is proved that ideal set algebra becomes residuai lattice if proper implication and corresponding Complement Operators are Selected.The defination of generation ideal and p-bounded distributive lattice are given,based on that and atom of lattice theory. It is prove that ideal set algebra becomes MV algebra and R0 algebra.
出处
《模糊系统与数学》
CSCD
北大核心
2009年第5期65-69,共5页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(10471083)
陕西师范大学重点科研基金资助项目(995130)
关键词
理想格
剩余格
MV代数
R0代数
Ideal Lattice
Residual Lattices
MV-Algebras
Ro-Algebras