摘要
为研究在高温和低温胁迫条件下的三系杂交棉花粉育性稳定性问题,利用棉花细胞质雄性不育系和恢复系,配制2个三系杂交棉组合,抗A×浙大强恢(记作:强恢F1)和抗A×DES-HMF277(记作:弱恢F1),并以保持系(抗B)为对照,分别进行温室控温试验和田间自然温度试验,分析三系杂交棉对高温和低温胁迫的反应和花粉育性转换(可育至不育)的临界温度。试验表明,一般三系杂交棉的花粉育性对胁迫温度的反应比保持系敏感,常常花粉散粉少和花粉活力较低。不同三系杂交棉组合对胁迫温度的抗性存在明显差异,强恢F1明显高于弱恢F1,与保持系的育性相似,可育花粉率和自交结铃率较高,不孕籽率较低。经可育花粉率(Y)与温度(T)的回归分析,花粉育性转换的临界温度符合Y=a(T-Topt)2+b模型。强恢F1育性转换的上限和下限温度分别为38.0℃和13.0℃,弱恢F1为36.0℃和14.0℃,保持系为38.5℃和10.0℃。与低温胁迫比较,高温胁迫在我国大部分棉区更普遍,持续时间更长,对产量影响更大。提高三系杂交棉在胁迫气温条件下的花粉育性的稳定性是近期育种的重要目标。
Planting CMS-based hybrid cotton is an important way to use cotton heterosis. Fertility of hybrid cotton pollens is influenced by cultivar, climatic conditions, management practices and pests. Among all the factors, temperature is the primary one affecting cotton growth, the following is air humidity. Stability of pollen fertility under high and low temperature stresses, associated with the heterosis expression of CMS-based hybrids, is the main point to elucidate in this study. The fertility differences between hybrids and the maintainer were compared by testing the percentage of fertile pollens in the greenhouse experiment with temperature controlled and the field experiment with natural temperature. In addition, percentage of setting bolls and percentage of aborted seeds were tested in the field experiment. Pollen fertility was checked by benzidine-Naphthol fluorescence microscopic method, while cross-pollination experiments were performed by dusting pollen obtained from corresponding restorers, then percentage of setting bolls and percentage of aborted seeds were determined by calculating the number of bolls or seeds, respectively. The critical temperatures for upper limit and lower limit were searched from different given consistent temperatures, which each temperature was kept for eight days in the greenhouse when cotton pollens turned from fertility to sterility. The results showed that the response of CMS-based hybrids to the extreme temperature stress was more sensitive than that of the maintainer, while the former usually had lower stability in pollen vitality under the stress. However, different CMS-based hybrids had various tolerances to temperature stress, for example, hybrids (F1) restored by Zheda strong restorer showed higher pollen viability, more setting bolls and less aborted seeds under the stress than others. The response of pollen fertility to air temperature had a 5-day's delay in the field. Furthermore, the changes of maximum air temperature were more consistent with the curve of the
出处
《作物学报》
CAS
CSCD
北大核心
2009年第11期2085-2090,共6页
Acta Agronomica Sinica
基金
国家重点基础研究发展计划(973计划)项目[2004CB11730502(1)]
国家自然科学基金项目(30800694)
浙江省重点科技项目(2008C22087)
浙江省自然科学基金项目(Y306093)资助
关键词
棉花
细胞质雄性不育
气温胁迫
育性
临界温度
Cotton
Cytoplasmic male sterility (CMS)
Temperature stress
Pollen fertility
Critical temperatures