期刊文献+

用函数求根法解系统控制问题 被引量:1

SOLVING PROBLEM FROM SYSTEMS AND CONTROL BY ROOT-SEEKING METHOD FOR FUNCTIONS
原文传递
导出
摘要 提供了一大类系统控制问题的求解路线,当所考察的问题可转化为参数估计时,可以把问题进一步转化为未知回归函数求根(根即待估参数)的问题,而扩展截尾的随机逼近算法是解决这类求根问题的恰当工具.给出了算法的一般收敛定理,它已在一系列系统控制问题中得到应用.以ARMA过程的辨识,Hammerstein系统的适应调节为例,展示了上述求解路线的具体实现,并附有相应的模拟计算实例.这种方法提供的估计是递推的,并且以概率1收敛到真值. A solution route for a considerable class of problems arsing from systems and control is provided in the paper. When the problem under consideration can be transformed to parameter estimation, then it can further been transformed to a root-seeking problem for a unknown regression function with root equal to the parameter to be estimated. The stochstic approximation algorithm with expanding truncations is an appropriate tool to solve the problem in question. Its general convergence theorem is given in the paper, and it has successfully been applied in solving a series of problems from systems and control. Identification of ARMA processses and adaptive regulation for Hammerstein sysetms described in the paper serve as examples of realizing the solution route given in the paper. Corresponding simulation results are also provided. The estimates accordings to this solution route are recursive and convergent with probability one.
作者 陈翰馥
出处 《系统科学与数学》 CSCD 北大核心 2009年第10期1299-1310,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60821091 60874001) 国家空间智能实验室课题资助
关键词 求解路线 参数估计 未知函数求根 系统辨识 ARMA 适应调节 Solution route, parameter estimation, root-seeking for unknown function system identification, ARMA, adaptive regulation.
  • 相关文献

参考文献2

二级参考文献29

  • 1Arimoto S, Karamura S and Miyazaki F. Bettering operation of robots by learning. J. Robot. Syst., 1984, 1: 123-140. 被引量:1
  • 2Bristow D A, Tharayil M and Alleyne A G. A survey of iterative learning control: A learning-based method for high-performance tracking control. IEEE Control Systems Magazine, 2006, 26(3): 96- 114. 被引量:1
  • 3Ahn Hyosung, Chen Y Q and Moore Kevin L. Iterative learning control: Survey and categorization from 1998 to 2004. IEEE Trans. System Man and Cybernetics Part C, 2007, 37(6): 1099-1121. 被引量:1
  • 4Chen Y Q and Wen C. Iterative Learning Control: Convergence, Robustness and Applications. London, Springer-Verlag, 1999. 被引量:1
  • 5Xu J X and Tan Y. Linear and Nonlinear Iterative Learning Control. New York, Springer, 2003. 被引量:1
  • 6Tao Gang and Kokotovic P V. Adaptive control of plants with unknown dead-zones. IEEE Trans. Automatic Control, 1994, 39(1): 59-68. 被引量:1
  • 7Tao Gang and Kokotovic P V. Discrete-time adaptive control of systems with unknown dead-zone, International Journal of Control, 1995, 61(1): 1-17. 被引量:1
  • 8Tao Gang and Canudas de Wit Carlos A. Special issue on adaptive systems with non-smooth non- linearities. International Journal of Adaptive Control and Signal Processing, 1997, 11(1): 1-100. 被引量:1
  • 9Xu Jianxin, Xu Jing and Lee Tongheng. Iterative learning control for systems with input deadzone. IEEE Trans. Automatic Control, 2005, 50(9): 1455-1459. 被引量:1
  • 10Xu Jianxin, Tan Ying and Lee Tongheng. Iterative learning control design based on composite energy function with input saturation. Automatica, 2004, 40(8): 1371-1377. 被引量:1

共引文献3

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部