摘要
目的:应用SELDI质谱仪建立大肠癌血清蛋白质指纹图谱的诊断模型。方法:测定182例血清标本(其中55例大肠癌、35例大肠腺瘤、92例健康人)的蛋白质指纹图谱,结合人工神经网络及支持向量机对这些数据进行处理,建立相应的指纹图谱诊断模型。结果:运用生物信息学方法从大肠癌与健康对照中筛选出了4个质荷比位于5 911 Da、8 922 Da、8 943 Da、8 817 Da(M/Z)峰,用它们建立的诊断模型的特异性为93.3%,敏感度为90.9%,Youden指数为0.84242。从大肠癌与大肠腺瘤中筛选出7个质荷比位于17 247 Da、18 420 Da、5 911 Da、9 294 Da、4 654 Da、21 694 Da、21 742 Da的峰值,建立模型的特异性为83.2%,敏感度为89.3%,Youden指数为0.72484。结论:该方法在大肠癌的诊断中较传统方法具有更高的敏感性和特异性。
Objective: To develop a bioinformatic tool and to use it to identify proteomic patterns in serum, distinguishing colorectal cancer from colorectal adenoma and healthy individuals. Methods: 182 serum samples including 55 colorectal cancer patients, 35 colorectal adenoma and 92 healthy individuals were subjected to analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Results: The diagnostic pattern combined of 4 candidate biomarkers (M/Z 5 911,8 922,8 944,and 8 817) could separate colorectal patients from healthy control with a specificity of 93, 3% ,sensitivity of 90.9% ,and Youden index value of 0. 84242. The diagnostic pattern combined of 7 candidate biomarkers (M/Z 17 247,18 420,5 911, 9 294,4 654,21 694,and 21 742) could separate colorectal cancer patients from colorectal adenoma patients with a specificity of 83.2% ,sensitivity of 89.3% ,and Youden index value of 0. 72484.Conclusions: Combination of SELDI with bioinformatics tool can identify some new biomarkers from the sera of colorectal cancer patients, which has a high sensitivity and specificity to distinguish colorectal cancer patients from healthy control.
出处
《浙江大学学报(医学版)》
CAS
CSCD
北大核心
2009年第5期470-477,共8页
Journal of Zhejiang University(Medical Sciences)
基金
教育部霍英东优选资助基金(114031)
浙江省科技发展计划项目(2006C23033)