期刊文献+

血清蛋白质指纹图谱结合生物信息学在大肠癌早期诊断中的应用 被引量:1

Classification and diagnostic prediction of colorectal cancer using protein profiling of serum and bioinformatics
下载PDF
导出
摘要 目的:应用SELDI质谱仪建立大肠癌血清蛋白质指纹图谱的诊断模型。方法:测定182例血清标本(其中55例大肠癌、35例大肠腺瘤、92例健康人)的蛋白质指纹图谱,结合人工神经网络及支持向量机对这些数据进行处理,建立相应的指纹图谱诊断模型。结果:运用生物信息学方法从大肠癌与健康对照中筛选出了4个质荷比位于5 911 Da、8 922 Da、8 943 Da、8 817 Da(M/Z)峰,用它们建立的诊断模型的特异性为93.3%,敏感度为90.9%,Youden指数为0.84242。从大肠癌与大肠腺瘤中筛选出7个质荷比位于17 247 Da、18 420 Da、5 911 Da、9 294 Da、4 654 Da、21 694 Da、21 742 Da的峰值,建立模型的特异性为83.2%,敏感度为89.3%,Youden指数为0.72484。结论:该方法在大肠癌的诊断中较传统方法具有更高的敏感性和特异性。 Objective: To develop a bioinformatic tool and to use it to identify proteomic patterns in serum, distinguishing colorectal cancer from colorectal adenoma and healthy individuals. Methods: 182 serum samples including 55 colorectal cancer patients, 35 colorectal adenoma and 92 healthy individuals were subjected to analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Results: The diagnostic pattern combined of 4 candidate biomarkers (M/Z 5 911,8 922,8 944,and 8 817) could separate colorectal patients from healthy control with a specificity of 93, 3% ,sensitivity of 90.9% ,and Youden index value of 0. 84242. The diagnostic pattern combined of 7 candidate biomarkers (M/Z 17 247,18 420,5 911, 9 294,4 654,21 694,and 21 742) could separate colorectal cancer patients from colorectal adenoma patients with a specificity of 83.2% ,sensitivity of 89.3% ,and Youden index value of 0. 72484.Conclusions: Combination of SELDI with bioinformatics tool can identify some new biomarkers from the sera of colorectal cancer patients, which has a high sensitivity and specificity to distinguish colorectal cancer patients from healthy control.
出处 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2009年第5期470-477,共8页 Journal of Zhejiang University(Medical Sciences)
基金 教育部霍英东优选资助基金(114031) 浙江省科技发展计划项目(2006C23033)
关键词 结直肠肿瘤/诊断 肿瘤标记物 生物学/血液 表面加强解析/电离-飞行时间-质谱仪 神经网络(计算机) 诊断模型 Colorectal neoplasms/diag Tumor markers, biological/blood Surface enhanced laser desorption/ionization time-of-fligh masspectrometry Neural networks (computer) Dignosis model
  • 相关文献

参考文献3

二级参考文献19

  • 1Huang X,Zhu HM,Deng CZ,Porro GB,Sangaletti O,Pace F.Gastroesophageal reflux: the features in elderlypatients[J].World Journal of Gastroenterology,1999,5(5):421-423. 被引量:13
  • 2ERICK K,JAMES H,SCHWARTS T M,et al.Principles of Neural Science [M]. 2ed,Chicago:The Chicago University of Press,20001.1288-1301. 被引量:1
  • 3SRINIVAS P R,SRIVASTAVA S,HANASH S,et al.Proteomics in early detection of cancer [J].Clin Chem,2001,47(10):1901-1911. 被引量:1
  • 4WRIGHT G L Jr.SELDI proteinchip MS:a platform for biomarker discovery and cancer diagnosis [J].Expert Rev Mol Diagn,2002,2(6):549-563. 被引量:1
  • 5QU Y S,ADASM B L,YUTAKA Y,et al.Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients [J].Clin Chem,2002,48(10):1835-1843. 被引量:1
  • 6LI J N,ZHANG Z,ROSENZWEIG J,et al.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer [J].Clin Chem,2002,48(8):1296-1304. 被引量:1
  • 7ZHUKOV T A,JOHANSON R A,CANTOR A B,et al.Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry [J].Lung Cancer,2003,40(3):267-279. 被引量:1
  • 8ROBERT C,BAST Jr.Status of tumor markers in ova-rian cancer screening [J].J Clin Oncol,2003,21(10 Suppl):200-205. 被引量:1
  • 9HUTCHS T W,YIP T T.New desorption strategies for the mass analysis of macromolecules [J].Rapid Commun Mass Spectrom,1993,7(5):576-580. 被引量:1
  • 10MERCHANT M,WEINBERGER S R.Recent advancements in surface enhanced laser desorption/ionization-time of flight-mass spectrometry [J].Electrophoresis,2000,21(6):1164-1177. 被引量:1

共引文献874

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部