摘要
对一类时类环境下的Chemostat系统s=〔1+be(t)-s〕Q-x(msa+s-k)x=x(msa+s-k)-Qx进行讨论,得到:如果b=0时,系统无周期解;当b≠0且|b|1时,系统存在周期解,这时如果mQ<μ*-1,则2π周期解(s*,0)是全局渐近稳定的;如果mQ>μ*-1,则(s*,0)是不稳定的,并且至少存在一个最小2π周期解(s(t),x(t)),有x(t)>0,且0<s(t)<s*(t).
This Paper discusses a class time varying environment chemostat system that is; = 1+be(t)-s Q+x(msa+s-k) =x(msa+s-k)-Qx It is deduced that if b=0,no periodic solution of system;b≠0 and |b|1,Periodic solution of system exists;WhenmQ<μ *-1 ,gobally asymptotically stable of 2π-Perodic solution(S *,0);if m/Q>μ *-1 ,no stable of (S *,0);and at least a little 2π-Perodic solution(s(t),x(t))exists.and x(t)>0,0<s(t)<(s *(t)).
出处
《沈阳建筑工程学院学报》
1998年第3期287-292,共6页
Journal of Shenyang Archit Civil Eng Univ: Nat Sci
基金
辽宁省自然科学基金
关键词
时变环境
周期解
定性分析
稳定性
环论
time varying environment
perodic solution
qualitative analysis
stability