摘要
Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio- temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 Ms8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 Ms9.0 Sumatra earthquake and the 2008 Ms8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichnan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the Ms8.0 Wenchnan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σapp is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro- dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σapp are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and shortterm apparent str
Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio-temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 M_S8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 M_S9.0 Sumatra earthquake and the 2008 M_S8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichuan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the M_S8.0 Wenchuan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σ_app is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro-dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σ_app are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and short-term apparen
基金
Scientific and Technology project(200808053)
National Key Basic Research 973b project support