期刊文献+

使用半边脸训练集的快速人脸检测方法 被引量:1

Fast Face Detection Using Half Face Training Set
下载PDF
导出
摘要 Viola和Jones提出的基于Boosted Cascade人脸检测方法具有速度快的优点,能够满足实时检测的要求.然而,由于Vio-la的方法采用的是完整的正面人脸作为训练集,所以在检测时对人脸的对称性要求很高.如果这种对称性因为光照、遮挡、旋转的原因而被破坏时,原方法的准确性就会降低.本文针对这一问题提出基于半边脸训练集的改进方案(即只用人脸的左半边或者右半边脸作为训练集),并分析了其可行性.实验结果表明,该方案在一定程度上解决了上述问题. The Boosted Cascaded method for fast face detection was proposed by Viola and Jones to meet the real-time requirement in detection speed. However, for this method requires whole frontal faces as training set, the learned detection system depends too heavily on the symmetric property of faces. The performance will be degraded greatly ff the faces in target picture lack symmetry by the reasons of illumination, occlusion, or rotation. To solve these problems, this paper suggests an improvement solution that adopts only half faces ( left or right) as training set, and analyzes its feasibility. Experimental results also show that this solution can work out the three problems above to a certain extent.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2277-2281,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60503025)资助
关键词 人脸检测 Boosted CASCADE 半边脸 镜像算法 face detection boosted cascade half face mirror algorithm
  • 相关文献

参考文献8

  • 1Ming-Hsuan Yang, David kriegman, Nnarendra Ahuja. Detecting faces in images: a survey [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24 (1) : 34-58. 被引量:1
  • 2Paul Viola, Michael Jones. Rapid object detection using a boosted cascade of simple features [ C ]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 1, 511-518. 被引量:1
  • 3Paul Viola, Michael Jones. Fast multi-view face detection [ R ]. TR2003-96, Mitsubishi Electric Research Laboratories, August 2003. 被引量:1
  • 4Zhang Zhen-qiu, Li Ming-jing, Li Start Z,et al. Multi-view face detection with FloatBoost[ C]. Proceedings of the 6th IEEE Workshop on Applications of Computer Vision, 2002, 184-188. 被引量:1
  • 5Wu Bo, Ai Hai-zhou, Chang Huang, et al. Fast rotation invariant multi-view face detection based on real AdaBoost[ C]. Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 17-19, 2004, 79-84. 被引量:1
  • 6Wu Jian-xin, James M Rehg, Matthew D MuUin. Learning a rare event detection cascade by direct feature selection [ C ]. Advances in Neural Information Processing Systems ( NIPS ), 2003, 1523- 1530. 被引量:1
  • 7Rainer Lienhart, Jochen Maydt. An extended set of haar-like features for rapid object detection[ C]. Proceedings of the 2002 International Conference on Image Processing, 2002, 1,900-903. 被引量:1
  • 8Rainer Lienhart, Luhong Liang, Alexander Kuranov. A detector tree of boosted classifiers for real-time object detection and tracking [ C]. Proceedings of the 2003 International Conference on Multimedia and Expo, Volume 2, 6-9 July 2003, 11-277-80. 被引量:1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部