期刊文献+

有约束过程动态优化问题的改进克隆选择算法 被引量:2

Improved Clonal Selection Algorithm for Constrained Dynamic Optimization Problems
下载PDF
导出
摘要 状态变量带约束的过程动态优化问题是化工系统工程的重要课题,有一定的难度。通过将其转换为等价的非线性规划后,可采用元启发式方法求解。人工免疫系统的克隆选择算法(CSA)简练易用,全局搜索性能良好,但局部寻优能力较弱,且无处理约束的机制。为此,拟引入免疫网络自学习算子,均匀设计方法,以及目标与约束分离的处理机制,构建改进的克隆选择算法(ICSA),并将其用于状态变量带约束的间歇反应器和乙醇生物反应器的动态优化等实例,效果良好。试验结果表明三种策略有效地改进了CSA的性能,使ICSA能以较少的计算代价搜索到较优的控制策略。 Process dynamic optimization with state-variable constraints is an important subject in process systems engineering,and is difficult to be solved. Through transforming dynamic optimization problem into equivalent nonlinear problem,the meta-heuristic methods were adopted to solve it. Clonal selection algorithm (CSA) originated from artificial immune systems is easy to be implemented and has well global exploration ability. However,its local exploitation ability is relatively weak,and it lacks of constraints handling mechanism. In this paper,the CSA was improved in following sides:(1) self-learning operator of immune network was introduced to enhance local exploitation ability; (2) uniform design method was adopted to generate the initial antibodies; (3) separation method of objective and constraints was introduced to handle state-variable constraints. Finally,an improved clonal selection algorithm (ICSA) was proposed,and it was used to solve the constrained dynamic optimization problems of both reactor and bioreactor of producing ethanol. The satisfactory results illustrate that these three adopted strategies can improve the performance of CSA effectively,and the ICSA can find the optimal control strategy with less computation cost.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2009年第5期858-863,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家科学基金资助项目(20276063)
关键词 克隆选择算法 自学习算子 均匀设计 状态变量 约束 动态优化 clonal selection algorithm self-learning operator uniform design state variable constraints dynamic optimization
  • 相关文献

参考文献15

  • 1Banga J R, Balsa-canto E, Moles C G. Dynamic optimization of bioreactors: a review [A]. Proceedings of the Indian Academy of Sciences [C], India, 2003: 1-21. 被引量:1
  • 2Sarkar D, Modak J M. Optimization of fed-batch bioreactors using genetic algorithm [J]. Chemical Engineering Science, 2003, 58(11): 2283-2296. 被引量:1
  • 3张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 4Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework [J]. Computers and Chemistry, 2001, 25(6): 583-595. 被引量:1
  • 5张兵,俞欢军,陈德钊.序贯优化化工动态问题的蚁群算法[J].高校化学工程学报,2006,20(1):120-125. 被引量:15
  • 6Castro L N D, Zuben F J V. The clonal selection algorithm with engineering applications [A]. Workshop on Artificial Immune Systems and Their Applications [C]. Las Vegas: USA: 2000. 被引量:1
  • 7ZHONG Wei-cai, Liu Jing, XUE Ming-zhi et al. A multi-agent genetic algorithm for global numerical optimization [J]. IEEE Transactions on System, Man, and Cybernetics, Part B, 2004, 34(2): 1128-1141. 被引量:1
  • 8Uniform Design. http://www.math.hkbu.edu.hk/UniformDesign/. 被引量:1
  • 9Carlos A, Coello Coello. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art [J]. Computer Methods in Applied Meehanles and Engineering, 2002, 191 ( 11-12): 1245-1287. 被引量:1
  • 10Dasgupta D. [EB/OL] http://ais.cs.memphis.edu/Books.aspx. ]. 被引量:1

二级参考文献21

  • 1张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 2Dadebo S A, Mcauley K B. Dynamic optimization of constrained chemical engineering problems using dynamic programming [J].Computers and Chemical Engineering, 1995, 19(5): 513-525. 被引量:1
  • 3Roubos J A, van Straten G, van Boxtel A J B. An evolutionary strategy for fed-batch bioreactor optimization: concepts and performance [J]. Journal of Biotechnology, 1999, 67(2): 173-187. 被引量:1
  • 4Pham Q T, Dynamic optimization of chemical engineering processes by an evolutionary method [J]. Computers and Chemical Engineering, 1998, 22(7): 1089-1097. 被引量:1
  • 5Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework [J]. Computers and Chemistry, 2001, 25(6): 583-595. 被引量:1
  • 6Dorigo M, Maniezzo V, Colomi A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 1-13. 被引量:1
  • 7Dorigo M, Gambardella L M Ant colonies for the traveling salesman problem [J]. Bio Systems, 1997, 43(2): 73-81. 被引量:1
  • 8Lee J, Ramirez W F. Optimal fed-batch control of induced foreign protein production by recombinant bacteria [J]. AIChE J, 1994,40(5): 899-907. 被引量:1
  • 9Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework. Computersand Chemistry, 2001, 25:583-595. 被引量:1
  • 10Luus R. Optimization of fed-batch fermentors by iterative dynamic programming. Biotechnology and Bioengineering,1993, 41:599 - 602. 被引量:1

共引文献28

同被引文献25

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部