期刊文献+

应用元胞自动机设计车刀片三维复杂槽形剖面 被引量:2

3D Complex Groove Section Design for Turning Inserts with Cellular Automaton
下载PDF
导出
摘要 根据切屑上向卷曲的机理及其折断理论,推导出等效槽形宽度的计算式,计算出切削中碳钢的三维复杂槽形等效槽形的宽度。在此基础上建立了可转位车刀片三维复杂槽形典型剖面的槽形曲线元胞自动机模型,提出了元胞演化规则,实现槽形曲线的动态演化和槽形曲线的设计,为三维复杂槽形曲面的设计奠定了基础。 This paper derives the formula which computes width of the equivalent groove of the 3D complex groove of the revolvabe turning insert when cutting medium carbon steel based on the theory of chip curling and breaking. The calculation method of the width of equivalent groove is proposed. The cellular automaton model which designs the curve of groove o7 revolvabe turning insert with the 3D complex groove is established. An evolvement rule is presented and a program is prepared to realize the dynamic evolvement and to design the groove curve. This work provides a base for the groove design and optimization.
出处 《机械设计与研究》 CSCD 北大核心 2009年第5期68-70,78,共4页 Machine Design And Research
基金 国家自然科学基金资助项目(50575062) 黑龙江省教育厅资助项目(10051063) 黑龙江省研究生创新基金资助项目(yjscx2005-223hlj)
关键词 车刀片 三维复杂槽形 槽形设计 元胞自动机 turning insert 3 D complex groove groove design cellular automaton
  • 相关文献

参考文献7

二级参考文献46

  • 1李振加.切屑折断过程研究[M].北京:机械工业出版社,1996.. 被引量:15
  • 2Howard A.Gutowitz,Introduction[J].Physica D,1990,45:vii-xiv. 被引量:1
  • 3S.Wolfram.University and Complexity in Cellular Automata[J].Physica D,1984,10(1):1-35. 被引量:1
  • 4P.Bardell,Ana1ysis of cellular automata used as pseudoradom pattern gnerators[C].In Proceedings of the on IEEE International Test Conference,IEEE Press,Piscataway,NJ,1990,762-768. 被引量:1
  • 5Kevin Cattell.Jon C.Muzio.Analysis of One-Dimensional Linear Hybrid Cellular Automata over GF(q)[C].IEEE Transactions on Computers,1996,45(7):782-791. 被引量:1
  • 6B.K.Kar.On Explicity Expressions in Additive Cellular Automata Theory[J].Information Sciences,1993,72:83-103. 被引量:1
  • 7N.Pitsianis,Ph.Tsalides,G.L Bleris,A.Thanailakis,H.C.Card,Deterministic One-dimensional Cellular Automata[J].Journal of Statistical Physics,1989,56(1/2):99-112. 被引量:1
  • 8Shin-ichi Tadaki.Shinya Matsufuji.Periodicity in one-dimensional finite linear cellular automata[J].Progress of Theoretical Physics,1993,89(2). 被引量:1
  • 9Farmer D,Toffoli T,Stephen Wolfram.Cellular Automata[J].Physica D,1984,10(1). 被引量:1
  • 10E.F.Moore.Machine Models of self-reproduction[J].Proc.Symp.Appl,Math,1962,14:17-33. 被引量:1

共引文献16

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部