期刊文献+

一类Schrdinger-Poisson型方程的稳定性 被引量:3

Stability of Schrdinger-Poisson Type Equations
下载PDF
导出
摘要 运用变分法研究一类描述物理学中电磁波在原生质中传播过程的非线性Schrdinger-Pois-son型方程.通过分析Hamilton性质和构造相应的变分问题,得到该系统基态的存在性.进而证明了该系统的基态是轨道稳定性. Variational methods were used to study the nonlinear Schroedinger-Poisson type equations which model the electromagnetic wave propagates in the plasma in physics. Through analyzing the Hamiltonian property to construct a constrained variational problem, the existence of the ground state of the system was obtained. Furthermore, the ground state being orbitaUy stable was proved.
出处 《应用数学和力学》 CSCD 北大核心 2009年第11期1381-1386,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771151 10901115) 四川省教育厅(重点)科研基金资助项目(2006A063) 四川省科技厅应用基础科研基金资助项目(07JY029-012)
关键词 Schroedinger—Poisson型方程 基态 存在性 轨道稳定 Schroedinger-Poisson type equations ground state existence orbital stability
  • 相关文献

参考文献23

  • 1Abdullaev F Kh. Dtmamical chaos of solitons and nonlinear periodic waves[ J]. Phys Reports, 1989,179( 1 ): 1-78. 被引量:1
  • 2Gagliardo E. Proprieta di alcune classi di funzioni in piu varibili[ J ]. Ricerche di Math, 1958,7 ( 1 ): 102-137. 被引量:1
  • 3Gagliardo E. Ulteriori proprieta di alcune classi di funzioni in pin varibili [ J ]. Ricerche di Math, 1959,8( 1 ) :24-51. 被引量:1
  • 4Kuznetsov E A, Rubenchik A M, Zakharov V E. Soliton stability in plasmas and by drodynamics [ J ]. Phys Reports, 1986,142 ( 3 ): 103-165. 被引量:1
  • 5Makhankov V G. Dynamics of classical solutions (in non-interable systems) [ J ]. Phys Reports, 1978,35( 1 ): 1-128. 被引量:1
  • 6Zakharov V E. Collapse of Langmuir waves [ J ]. Soy Phys JETP, 1972,35 (5) :908-914. 被引量:1
  • 7GUO Bo-ling, YANG Lin-ge. The global solution and asymptotic behaviors for one class of non- linear evolution equations [ J ]. J Partial Diff Eqs, 1997, 10 ( 3 ): 232-246. 被引量:1
  • 8Fukuizumi R, Ohta M. Stability of standing waves for nonlinear Schrodinger equations with potentials [ J ]. Differential and Integral Eqs, 2003,16 ( 1 ): 111- 128. 被引量:1
  • 9Goncalves Rebeiro J M. Instability of symmetric stationary states for some nonlinear Schrodinger equations with an external magnetic field[ J]. Ann Inst Henri Poincare Physique Theorique, 1991,54 ( 4 ):403-433. 被引量:1
  • 10Grillakis M , Shatah J, Strauss W A. Stability theory of solitary waves in the presence of symmetry Ⅰ [ J]. J Funct Anal, 1987,74( 1): 160-197. 被引量:1

同被引文献34

  • 1熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板[J].湖南大学学报(自然科学版),2004,31(4):101-105. 被引量:12
  • 2李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报,2004,36(4):496-500. 被引量:47
  • 3Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non- spherical stars[ J]. Royal Astronomical Society, Monthly Notices, 1977, 181:375-389. 被引量:1
  • 4Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992, 10(5) :307-318. 被引量:1
  • 5Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2) :229-255. 被引量:1
  • 6Melenk J M, Babuska I. The partition of unity fmite element method: basic theory and applications[ J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139 ( 1/4 ) : 289-314. 被引量:1
  • 7Duarte C A, Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Ap- plied Mechanics and Engineering, 1995, 139 ( 1/4 ) :237-252. 被引量:1
  • 8Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9) :1081-1106. 被引量:1
  • 9Chen J S, Pan C H, Wu C T, Liu W K. Reproducing kernel particle methods for large deform- ation analysis of non-linear structures[ J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4) :195-227. 被引量:1
  • 10Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998, 43:839-887. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部