摘要
探讨了一个具有如下特征的排队系统,顾客到达的时间间隔和服务时间独立同分布,系统进入空闲之后,服务员开始休假,直到累积N个顾客之后,才进入一个新的忙期.此系统是经典GI/G/1排队系统的拓广,利用补充变量法,可以得到一马尔可夫骨架过程,借助于马尔可夫骨架过程理论,该系统瞬时队长分布的积分表示被导出.
Studies a queueing system wherein the interarrival times and service times are mutually independent identically distributed random variables, attendants begin taking a vacation when system at leisure and get no access to a new busy period until the accumulation of N customers. Clearly,the queueing system is generalization of GI/G/1 queue. Using supplementary variable technique, we get a multi-dimensional Markov skeleton process, then by means of the theory of Markov skeleton processes,integral representation of the transient distribution of queue length of the above queue is obtained.
出处
《河南科学》
2009年第11期1355-1357,共3页
Henan Science
基金
航空科学基金(2008ZE55004)
河南省教育厅自然科学基金资助项目(2008A110020
2009B110022)
关键词
排队系统
马尔可夫骨架过程
补充变量
queueing system
Markov skeleton process
supplementary variable