期刊文献+

N-策略GI/G/1排队系统瞬时队长分布

The Transient Distribution of Queue Length for N-Strategy GI/G/1 Queueing System
下载PDF
导出
摘要 探讨了一个具有如下特征的排队系统,顾客到达的时间间隔和服务时间独立同分布,系统进入空闲之后,服务员开始休假,直到累积N个顾客之后,才进入一个新的忙期.此系统是经典GI/G/1排队系统的拓广,利用补充变量法,可以得到一马尔可夫骨架过程,借助于马尔可夫骨架过程理论,该系统瞬时队长分布的积分表示被导出. Studies a queueing system wherein the interarrival times and service times are mutually independent identically distributed random variables, attendants begin taking a vacation when system at leisure and get no access to a new busy period until the accumulation of N customers. Clearly,the queueing system is generalization of GI/G/1 queue. Using supplementary variable technique, we get a multi-dimensional Markov skeleton process, then by means of the theory of Markov skeleton processes,integral representation of the transient distribution of queue length of the above queue is obtained.
出处 《河南科学》 2009年第11期1355-1357,共3页 Henan Science
基金 航空科学基金(2008ZE55004) 河南省教育厅自然科学基金资助项目(2008A110020 2009B110022)
关键词 排队系统 马尔可夫骨架过程 补充变量 queueing system Markov skeleton process supplementary variable
  • 相关文献

参考文献6

  • 1Dshalaow J H. Frontiers in queueing: models and applications in science and engineering[M]. New York: CRC Press, 1997. 被引量:1
  • 2Alia A S, Rao T S. Supplementary variable technique in stochastic models [J].Probability in the Engineering and Informational Sciences, 2000 (14) : 203-218. 被引量:1
  • 3田乃硕著..休假随机服务系统[M].北京:北京大学出版社,2001:367.
  • 4Hou Zhenting, Liu Guoxin. Markov skeleton process and their applications [M]. Beijing: Science Press, 2005: 1-30, 92-107. 被引量:1
  • 5Cox D R. The analysis of non-Markovian stochastic process by the inclusion of supplementary variables[M]. New York: Proc Camb Phill Soc.51,1955: 433-441. 被引量:1
  • 6侯振挺,何宁卡.马氏骨架过程与一个排队系统的瞬时队长[J].铁道科学与工程学报,2004,1(2):107-110. 被引量:2

二级参考文献4

  • 1侯振挺 刘再明 邹捷中.马尔可夫骨架过程[M].长沙:湖南科学技术出版社,2000.17-24. 被引量:6
  • 2Jeugeni H Dshalalow. Frontiers in Queueing: Models and Applications in Science and Engineering[M].CRC, 1997. 被引量:1
  • 3Alfa A S, Rao T S S S. Supplementary variable technique in stochastic models [J]. Probability in the Engineering and Informational Sciences, 2000,(14):203-218. 被引量:1
  • 4Gihman I I, Skorohod A V. The Theory of Stochastic Processes Ⅱ[M]. New York: Springer-Verlag, 1979. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部