期刊文献+

Phase Behavior of Liquid Crystals Formed in [C12mim]CI/H2O and [C12mim] Cl/Alcohols Systems

Phase Behavior of Liquid Crystals Formed in [C12mim]CI/H2O and [C12mim] Cl/Alcohols Systems
下载PDF
导出
摘要 Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investigated at 25 ℃. Hexagonal liquid crystal phase (H1) is identified in [C12mim]Cl/H2O system, and lamellar liquid-crystalline (Lα) phase is found in [C12mim]Cl/alcohols systems by using polarized optical microscopy and small-angle X-ray scattering techniques. The formation of such phases is considered as a synergetic result of the solvatophobic force and the hydrogen-bonded network comprising an imidazoliuin ring, chloride ion and water (or alcohols), which can be confirmed by Fourier transform infrared spectra. It is noticeable that in [C12mim]Cl/1-octanol system, the lattice spacings of lamellar phase increase with increasing C12mimCl concentration, which is opposite to the results of [C12mim]Cl/H2O system. This may result mainly from stronger static repulsion among hydrophilic headgroups of imidazolium salts arranged in the bilayers of lamellar structures. Further measurements by differential scanning calorimetry indicate that the lamellar phase is stable within a wide temperature range above room temperature. However, the lattice spacings decrease with the increase of temperature, which may. be due to the softening of the hydrocarbon chain of [C12mim]Cl molecules. In different alcohols systems, it is found that the lamellar lyotropic liquid crystal structure is easier to be formed when the carbon chain length becomes longer.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第5期453-459,I0001,共8页 化学物理学报(英文)
关键词 1-dodecyl-3-methylimidazolium chloride Lyotropic liquid crystal Differentialscanning calorimetry Small-angle X-ray scattering [C12mim] Cl 溶致液晶 差示扫描量热法 小角X射毓散射 傅立叶红外吸收光谱
  • 相关文献

参考文献40

  • 1T. Welton, Chem. Rev. 99, 2071 (1999). 被引量:1
  • 2T. D. Avery, N. F. Jenkinsl M. C.Kimber, D. W. Lupton, and D. K. Taylor, Chem. Commun. 28 (2002). 被引量:1
  • 3H. Olivier-Bourbigou and L.Magna, J. Mol. Catal. A 3484, 1 (2002). 被引量:1
  • 4J. Fuller, R. T. Carlin, and R. A. Osteryoung, J. Electrochem. Soc. 144, 3881 (1997). 被引量:1
  • 5D. Jeong, Y. Shim, M. Y. Choi, and H. J. Kim, J. Phys. Chem. B 111, 4920 (2007). 被引量:1
  • 6Y. F. Masahiro, R. M. Douglas, C. K. Patrick, and F. A Maria, Electrochem. Comlnun. 8, 445 (2006). 被引量:1
  • 7C. Lagrost, D. Carri, M. Vaultier, and P. Hapiot, J. Phys. Chem. A 107, 745 (2003). 被引量:1
  • 8A. M. Scurto, S. N. V. K. Aki, and J. F. Brennecke, Chem. Commun. 572 (2003). 被引量:1
  • 9G. T. Wei, Z. Yang, C. Y. Lee, H. Y. Yang, and C. R. C. Wang, J. Am. Chem. Soc. 126, 5036 (2004). 被引量:1
  • 10J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares, and D. W. Armstrong, Chem. Commun. 2444 (2003). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部