摘要
假设K是Hilbert空间E的非空闭凸有界子集,T:K K是一致Lipschitzian渐近伪压缩映射,数列{an}满足δ≤an≤1-δ,δ∈(0,1)是足够小的常数.则对任意的x0∈K,由Mann型隐迭代算法xn=anxn-1+(1-an)Tnxn(n>0)迭代出的序列{xn}弱收敛于T的不动点.
Let K be a nonempty bounded and closed convex subset of Hilbert space E, and T.. K "K be a uniformly Lipschitzian asymptotically pseudocontractive mapping. Suppose that {an } is chosen in such a way that δ≤an≤1-δ for all n, where δ∈ (0, 1) is a small enough constant, then for arbitrary x0 E K, the sequence {x. } given by the Mann type implicit iteration process xn= anxn + (1 - an)T^nxn (n〉0) weakly converges to the fixed point of T.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第10期131-133,共3页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10771173)
河南省教育厅自然科学基础研究指导项目(2008B110012)