期刊文献+

ID3算法及其改进 被引量:9

ID3 Algorithm and Its Improvement
下载PDF
导出
摘要 文章对ID3算法的基本概念和原理进行了相应的详细阐述以及解释说明,并针对ID3算法倾向于取值较多的属性的缺点,引进信息增益率对ID3算法作了改进,并通过实验对改进前后的算法进行了比较,实验表明,改进后的算法行之有效。 The article largely describes and explains the basic concept and the principle of decision tree ID3 algorithm,however,decision tree ID3 algorithm tends to choose attributes that are sampled more often,so focusing on this deficiency.The paper introduce gain ratio to improve the ID3 algorithm,and then compare the original algorithm with the modified algorithm by experiment,whose result proves the improved algorithm more efficient than original one.
作者 徐雯 张扬
出处 《计算机与数字工程》 2009年第10期19-21,共3页 Computer & Digital Engineering
关键词 决策树 ID3算法 信息增益 增益率 decision tree ID3 algorithm information gain gain ratio
  • 相关文献

参考文献9

  • 1董琳,邱泉,于晓峰,等译.数据挖掘实用机器学习技术(第二版)[M].北京:机械工业出版社,2006. 被引量:1
  • 2曲开社,成文丽,王俊红.ID3算法的一种改进算法[J].计算机工程与应用,2003,39(25):104-107. 被引量:79
  • 3D. Riano. Learning rules within the framework of environmental sciences[C], in:BESAI'98, 1998 : 151-165. 被引量:1
  • 4雷蕾,秦侠,姚小丽.数据挖掘技术在环境科学中的应用[J].环境与可持续发展,2006,31(6):8-10. 被引量:2
  • 5Dzeroski, S. , J. Grbovic, W. Walley, et al. Using machine learning techniques in the construction of models, ii. data analysis with rule induction[J].Ecological Modelling, 1997,95(1) : 95-111. 被引量:1
  • 6孙敏..数据挖掘及在绿地生态评价中的应用研究[D].广西大学,2005:
  • 7王建华,王菲,黄国建.数据挖掘技术研究的现状及展望[M].香港:Global-Link出版社. 被引量:1
  • 8Quinlan J R. Induction of decision tree[J]. Machine Learning, 1986, (1) : 81 - 106. 被引量:1
  • 9郭景峰,米浦波,刘国华.决策树算法的并行性研究[J].计算机工程,2002,28(8):77-78. 被引量:26

二级参考文献28

  • 1熊建秋,李祚泳,邹长武.基于粗集理论的地下水水质指标属性约简[J].水科学进展,2005,16(4):494-499. 被引量:7
  • 2李祚泳.B-P网络用于水质综合评价方法的研究[J].环境工程,1995,13(2):51-53. 被引量:48
  • 3[1]Apte C, Weiss S. Data Mining with Decision Trees and Decision Rules. Future Generation System, 1997, 13:197-210 被引量:1
  • 4[2]Bowyer K W. A Parallel Decision Tree Builder for Mining Very Large Visualization Datasets. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2000,3: 1888-1893 被引量:1
  • 5[3]Agrawal R, Lmielinshi T, Swmi A. Database Mining: A Performance Perspective. IEEE Trans. on Knowledge and Data Engineering,1993, 5(6): 914 -925 被引量:1
  • 6R·格罗恩.数据挖掘一构筑企业竞争优势[M].西安:西安交通大学出版社,2001.. 被引量:1
  • 7Quinlan J R.Induction of decision tree[J].Machine Learning, 1986; (1): 81-106. 被引量:1
  • 8Quinlan J R.C4.5:Programs for Machine Learnint[M].Morgan Kaufmann,1992. 被引量:1
  • 9Quinlan J R.Discovering rules from large collections of examples:Acase study[C].In:Michie D,eds.Expert Systems in the Micro Electronic Age,Edinburgh University Press,1979. 被引量:1
  • 10Quinlan J R.Learning efficient classification procedures and their application to chess endgames[C].In:R S Michalski,J G Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach, Tioga, 1983. 被引量:1

共引文献102

同被引文献57

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部