摘要
提出了行(列)倒置矩阵与行(列)对称矩阵的概念,研究了它们的性质,获得了一些新的结果,给出了实行(列)对称矩阵的QR分解的公式,它们可极大地减少行(列)对称矩阵的QR分解的计算量与存储量,而且不会降低数值精度.
The concepts of row(column) inversion matrix and row(column) symmetric matrix are given.Their basic properties are studied,and some new results are gained.The formulas for the QR factorization of real row(column) symmetric matrix are given,all of which can dramatically reduce the amount of calculation for QR factorization of real row(column) symmetric matrix,and save the CPU time and memory without loss of any numerical precision.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2009年第9期238-240,245,共4页
Journal of Harbin Institute of Technology
基金
重庆市自然科学基金资助(CSTS2005BB0243)
重庆市教委科技项目基金资助(KJ0707023)
关键词
行(列)倒置矩阵
行(列)对称矩阵
QR分解
row(column) inversion matrix
row(column) symmetric matrix
QR factorization