摘要
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。
Based on artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), a hybrid particle swarm optimization algorithm is proposed. This method makes full use of the global convergent performance of AFSA and the quickly local convergent performance of PSO, overcomes the deficiencies of the AFSA and PSO, meanwhile exploits the two's advantage. This algorithm is successfully used for optimizing complex nonlinear function and solving complex chemistry equation roots. The numerical simulation results show that the hybrid particle swarm optimization algorithm owns a faster convergent rate and a better globally convergent performance.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2009年第10期1257-1261,共5页
Computers and Applied Chemistry
基金
国家自然科学基金资助项目(60461001)
广西自然科学基金资助项目(0542048
0832082)
关键词
粒子群算法
人工鱼群算法
混合算法
化学方程
函数优化
particle swarm optimization, artificial fish swarm algorithm, hybrid algorithm, chemistry equation, function optimization