期刊文献+

基于粗糙集的支持向量回归机混合算法 被引量:3

Support vector regression hybrid algorithm based on rough set
下载PDF
导出
摘要 利用粗糙集(RS)对不精确数据的处理能力,生成分类数据的边界集,替代原始样本作为训练集,减少训练集与获取的支持向量的数量,然后使用支持向量机的最小序列优化(SMO)算法改进回归学习机的性能。将粗糙集与SMO回归算法结合提出一种混合函数回归算法RS-SMO-RA。在常用SMO回归算法SMO-RA基础上,扩增一段简短的生成边界样本的算法程序。仿真结果表明,算法RS-SMO-RA的效率更高,且能够改进学习结果的性能。 Rough set (RS) was utilized to analyze imprecise data and get the boundary set of the classified data. The boundary set can substitute the original inputs as a training subset, and the size of the training set and the gained support vectors are shorten. Then, the learning machine has solutions with high quality by sequential minimal optimization (SMO) algorithm of regression. Based on rough set and SMO algorithm of regression, a hybrid algorithm of RS-SMO-RA was presented for the enhanced capability of machine learning. For differentiating boundary samples, a simple and short module was added to the common algorithm of SMO regression, SMO-RA. The presented RS-SMO-RA algorithm is verified with high efficiency and performance.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期159-163,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 广东省科技厅科技攻关项目(2005B10201006) 广州市科技攻关引导项目(2003Z3-D0091)
关键词 支持向量回归机 SMO回归算法 边界样本集 粗糙集 support vector regression algorithm of SMO regression boundary set rough set
  • 相关文献

参考文献11

  • 1VAPNIK V N. Support vector method[ J]. Lecture Notes in Computer Science, 1997 ( 1 ) : 1327:263. 被引量:1
  • 2Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004. 被引量:46
  • 3徐长航,陈国明,谢静.基于支持向量机和蒙特卡洛的结构可靠性分析方法及应用[J].中国石油大学学报(自然科学版),2008,32(4):103-108. 被引量:8
  • 4PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines[ R/OL]. Tech Rep MSR-TR 98-14, Microsoft Res., Redmond, WA, Apr. 1998 [ 2007-09-30 ]. http://research, microsoft. com/en-us/um/people/jplatt/smotr, pdf. 被引量:1
  • 5FLAKE Gary William. Steve Lawrence efficient SVM regression training with SMO [ J ]. Machine Learning, 2002,46 : 271-290. 被引量:1
  • 6杨杰,叶晨洲,全勇,陈念贻.支撑向量机回归的简化SMO算法[J].红外与激光工程,2004,33(5):533-537. 被引量:9
  • 7SHEVADE S K, KEERTHI S S, BHATTACHARYYA C, et al. Improvments to the SMO algorithm for SVM regression[J]. IEEE Transactions on Neural Networks, 2000,9 ( 11 ) :1188-1193. 被引量:1
  • 8MATTERA D, PALMIERI F, HAYKIN S. An explicit algorithm for training support vector machines[J]. Signal Processing Letters, IEEE, 1999,9 (6) :243-245. 被引量:1
  • 9曾绍华,魏延,段廷才,曹长修.一种支持向量逐步回归机算法研究[J].计算机工程与应用,2007,43(8):78-81. 被引量:5
  • 10邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2006. 被引量:9

二级参考文献36

  • 1李洪双,吕震宙,岳珠峰.结构可靠性分析的支持向量机方法[J].应用数学和力学,2006,27(10):1135-1143. 被引量:27
  • 2袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1999.. 被引量:47
  • 3[1]Vapnik V. The Nature of Statistical Learning Theory. 2nd ed.[M]. NewYork:Springer-Verlag, 1998. 被引量:1
  • 4[3]Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods:Support Vector Machines (Edited by Scholkopf B,Burges C,Smola A)[M]. Cambridge MA: MIT Press, 1998.185-208. 被引量:1
  • 5[4]Smola Alex J,Scholkopf Bernhard. A Tutorial on Support Vector Regression[EB/OL]. http://www.neurocolt.com NeuroCOLT2 Technical Report Series NC2-TR-1998-030. 被引量:1
  • 6[5]Flake Gary William,Lawrence Steve. Efficient SVM Regression Training with SMO[J]. Machine Learning,2002,46(1/2/3):271-290. 被引量:1
  • 7Avidan S.Subset selection for efficient SVM tracking[C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,18-20 June 2003,2003:85-92. 被引量:1
  • 8Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C]//Haussler D.Proceedings of the 5th annual ACM Workshop on computation learning theory.ACM Press,1992. 被引量:1
  • 9Bradford C.The quickhull algorithm for convex hulls[J].ACM Trans On Mathematical Software,1996,22(44):469-483. 被引量:1
  • 10Chang C C,Lin C J.Some analysis on nu-support vector classification[R].National Taiwan University,1999. 被引量:1

共引文献72

同被引文献28

引证文献3

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部