期刊文献+

动态聚类算法在网络入侵检测中的应用

Application of Dynamic Clustering Algorithm in Network Intrusion Detection
下载PDF
导出
摘要 为了进一步提高网络入侵检测技术的检测率,降低误报率和漏报率。针对普通聚类算法存在的聚类结果对随机选取初始聚类中心敏感、分类结果不稳定,从而造成的检测率低、漏报和误报率高的特点。提出一种基于动态聚类算法的网络入侵检测模型,实验结果表明通过在K-均值聚类算法的基础上增加动态迭代调整聚类中心,使聚类结果更稳定更准确。与K-均值聚类等算法相比提高了网络入侵检测的性能,从而表明该算法的可行性、有效性。 In order to improve the detection rate,lower false alarm rate and missing rate, further. A network intrusion detection model that combines a dynamic clustering algorithm and intrusion detection technology is proposed. The general clustering algorithm is sensitive of the initial cluster center using, and it can make the classification results of instability, resUlting in the detection rate is low,and failing to report the characteristics of a high false alarm rate. A model of network intrusion detection based on dynamic clustering algorithm is introduced. Experimental results show that the dynamic clustering results are more stable and more accurate by adding dynamic iteration to adjust the basis of cluster center. To a certain extent, the performance of network intrusion detection is improved, the feasibility and effectiveness of the algorithm are demonstrated.
作者 张珍 万世昌
出处 《现代电子技术》 2009年第20期85-87,共3页 Modern Electronics Technique
关键词 聚类 聚类中心 距离 迭代 入侵检测 clustering cluster center distance iterative intrusion detection
  • 相关文献

参考文献12

二级参考文献36

  • 1杨武,云晓春,李建华.一种基于强化规则学习的高效入侵检测方法[J].计算机研究与发展,2006,43(7):1252-1259. 被引量:12
  • 2Bace R. Intrusion Detection[M]. New York: Macmillan Technical Publishing, 2000. 被引量:1
  • 3Forrest S, Perrelason A S, Allen L. Self-nonself discrimination in a computer [C]// Rushby J, Meadows C. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland CA: IEEE Computer Society Press, 1994: 202-212. 被引量:1
  • 4Ghosh A K, Michael C, Schatz M. A real time intrusion system based on learning program behavior [C]// Debar H, Wu S F (eds). Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000: 93- 109. 被引量:1
  • 5Lee W, Stolfo S J. A data mining framework for building intrusion detection model[C]// Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999: 120- 132. 被引量:1
  • 6Pawalk Z. Rough sets [J]. Int J Computer and Information Sci, 1982, 11(5):341-356. 被引量:1
  • 7Ziako W. Rough sets: Trends, challenges, and prospects [C]// Ziako W, Yao Y (eds). Rough Sets and Current Trends in Computing (RSCTC 2000). Banff: Springer-Verlag, 2001: 1-7. 被引量:1
  • 8姚灏 卢显良.[D].电子科技大学,. 被引量:1
  • 9BoSetng, MingYe, JieLi, Intrusion Detection Technolosy Research Based High-Speed Network. 被引量:1
  • 10BoSetng, MingYe, JieLi. Intrusion Detection Technolosy Research Based High-Speed Network. 被引量:1

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部