期刊文献+

双极量子流体动力学模型的热平衡解

The thermal equilibrium solution of bipolar quantum hydrodynamic model
下载PDF
导出
摘要 研究了热平衡状态下双极量子流体动力学模型的Dirichlet-Neumann混合边值问题,利用截断方法和Leray-Schauder不动点定理证明了其解的存在性,另外还证明了当普朗克常数充分大时其解是唯一的. This paper was concerned with the Dirichlet-Neumann mixed boundary value problem of bipolar quantum hydrodynamic model in thermal equilibrium.By truncation method and Leray-Schauder fixed point theorem,the existence of solution to the problem is proved.In addition,the uniqueness of the solution was proved as the Plank constant was large enough.
作者 董建伟
出处 《周口师范学院学报》 CAS 2009年第5期30-32,共3页 Journal of Zhoukou Normal University
基金 河南省高等学校青年骨干教师资助计划项目(No.2006110016) 郑州航空工业管理学院青年教师科研基金资助项目(No.Q05K066)
关键词 双极量子流体动力学模型 热平衡 混合边值问题 存在性 唯一性 bipolar quantum hydrodynamic model thermal equilibrium mixed boundary value problem existence uniqueness
  • 相关文献

参考文献6

  • 1Ingenuin Gasser,Ansgar Jungel.The quantum hydrodynamic model for semiconductors in thermal equilibrium[J].Zangew Math Phys,1997,48:45-59. 被引量:1
  • 2Ansgar Jungel.A steady-state quantum Euler-Poisson system for potential flows[J].Commun Math Phys,1998,194:463-479. 被引量:1
  • 3Ansgar Jungel,Maria Cristina Mariani,Diego Rial.Local existence of solutions to the transient quantum hydrodynamic equations[J].Math Models and Methods in Applied Sciences,2002,12(4):485-495. 被引量:1
  • 4Ansgar Jungel.Nonlinear Problems in Quantum Semiconductor Modeling[J].Nonlinear Analysis,2001,47:5873-5884. 被引量:1
  • 5董建伟,沈会焘.一类半导体稳态模型的混合边值问题[J].河南师范大学学报(自然科学版),2007,35(2):33-35. 被引量:1
  • 6Andreas Unterreiter.The Thermal Equilibrium Solution of a Generic Bipolar Quantum Hydrodynamic Model[J].Communications in Mathematical Physics,1997,188:69-88. 被引量:1

二级参考文献5

  • 1Ingenuin Gasser,Ansgar Jungel.The quantum hydrodynamic model for semiconductors in thermal equilibrium[J].Z angew Math Phys,1997,48:45-59. 被引量:1
  • 2Stampacchia G.Equations elliptiques du second order a coefficients discontinus[M].Canada:Les Press del'University de Montreal,1966:216-218. 被引量:1
  • 3Troianiello G M.Elliptic Differential Equations and Obstacle Problems[M].New York:Plenum Press,1987:81-83. 被引量:1
  • 4Konrad Groger.A W1,p-Estimate for Solutions to Mixed Boundary Value Problems for Second Order Elliptic Differential Equations[J].Math Ann,1989,283:679-687. 被引量:1
  • 5Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order[M].(2Ed).Berlin:Springer,1983:199. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部