摘要
研究了热平衡状态下双极量子流体动力学模型的Dirichlet-Neumann混合边值问题,利用截断方法和Leray-Schauder不动点定理证明了其解的存在性,另外还证明了当普朗克常数充分大时其解是唯一的.
This paper was concerned with the Dirichlet-Neumann mixed boundary value problem of bipolar quantum hydrodynamic model in thermal equilibrium.By truncation method and Leray-Schauder fixed point theorem,the existence of solution to the problem is proved.In addition,the uniqueness of the solution was proved as the Plank constant was large enough.
出处
《周口师范学院学报》
CAS
2009年第5期30-32,共3页
Journal of Zhoukou Normal University
基金
河南省高等学校青年骨干教师资助计划项目(No.2006110016)
郑州航空工业管理学院青年教师科研基金资助项目(No.Q05K066)
关键词
双极量子流体动力学模型
热平衡
混合边值问题
存在性
唯一性
bipolar quantum hydrodynamic model
thermal equilibrium
mixed boundary value problem
existence
uniqueness