期刊文献+

污水处理出水水质指标的非线性动态软测量模型 被引量:6

Nonlinear Dynamic Soft Sensing Model of Wastewater Treatment Effluent Water Quality Indicators
下载PDF
导出
摘要 由于缺乏稳定可靠的水质在线分析仪表,污水处理厂很难实现实时水质闭环控制和操作优化.通过选择污水过程中容易获得的进水流量和水质、溶解氧浓度、曝气氧量等辅助变量,提出一种基于PLS的多变量非线性动态多模型软测量建模方法.该方法基于有源自回归(Auto-Re-gressive with extra inputs,ARX)模型与模糊C-均值(Fuzzy C-Means,FCM)聚类方法识别操作工况,在不同操作工况分别采用神经网络偏最小二乘法NNPLS(Neural Net Partial Least Square),建立多个非线性子模型拟和系统全局非线性.所提方法应用于某污水处理厂出水水质组分浓度软测量,仿真试验结果表明:该方法建立的多变量出水水质指标模型精度优于传统线性PLS模型. Due to the lack of widely stable and reliable water quality parameters on-line instrumentation,it is difficult to implement closed-loop control of water quality and optimize the operation in wastewater treatment plant.A multi-variable nonlinear dynamic multi-model soft-sensing model based on PLS,by using water flow and quality,the dissolved oxygen,the oxygen aeration and other auxiliary variables to receive easily as parameters is proposed to solve the problem of multi-variable,non-linear and time-varying uncertainty in wastewater treatment process.The methodology that integrates dynamic ARX with Fuzzy C-means identifies operating conditions of time-varying and uncertainty in the wastewater treatment process.NNPLS is used to establish a number of non-linear model in different operating conditions and the whole non-linear system.The proposed method is applied in soft-sensing of effluent quality component concentration in wastewater treatment plant.Simulation results indicate that the method which establishes a multi-variable model of water quality indicators for precision is better than traditional linear PLS model.
出处 《沈阳化工学院学报》 2009年第3期258-265,共8页 Journal of Shenyang Institute of Chemical Technolgy
基金 辽宁省教育厅科技研究项目资助(05L346 2008563)
关键词 神经网络偏最小二乘法 模糊C均值FCM 自回归ARX模型 软测量 污水处理 NNPLS fuzzy-c-means clustering(FCM) ARX soft-sensor WWTP
  • 相关文献

参考文献8

  • 1Lee D S, Jeon C O, Park J M, et al. Hybrid Neural Network Modeling of a Full-scale Industrial Wastewater Treatment Process [ J ]. Biotecbnology and Bioengineering ,2002,78 ( 6 ) :670 - 682. 被引量:1
  • 2Lee D S, Park J M, Vanrolleghem P A. Adaptive Multiscale Principal Component Analysis for On-line Monitoring of a Sequencing Batch Reactor[ J]. J of Biotechnol. ,2005,116 (2) : 195 - 210. 被引量:1
  • 3Lee D S, Vanrolleghem P A. Monitoring of a Sequencing Batch Reactor Using Adaptive Multiblock Principal Component Analysis [ J ]. Biotechnology Bioeng,2003,82(4) :489 -497. 被引量:1
  • 4MacGregor J F ,Kourti T. Statistical Process Control of Multivariate Processes [ J ]. Control Eng. Practice, 1995,3 ( 3 ) :403 - 414. 被引量:1
  • 5Wise B M, Gallagher N B. The Process Chemomettics Approach to Process Monitoring and Fault Detection [ J ]. J Proc Control, 1996,6 ( 6 ) : 329 - 348. 被引量:1
  • 6Geladi P, Kowalski B R. Partial Least-Squares Regression [ J ]. Anal Chim Acta, 1986,185 : 1 - 17. 被引量:1
  • 7Qin s J, McAvoy T J. Nonlinear PLS Modeling Using Neural Network [ J ]. Computer Chem. Eng. , 1992,16(4) : 379 -391. 被引量:1
  • 8Dae Sung Lee, Min Woo Lee, Seung Han Woo, et al. Nonlinear Dynamic Partial Least Squares Modeling of a Full-scale Biological Wastewater Treatment Plant[ J ]. Process biochemistry, 2006,41 ( 9 ) : 2050 - 2057. 被引量:1

同被引文献69

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部