期刊文献+

一种新型遥感图像配准方法 被引量:3

Novel registration method of remote sensing image
下载PDF
导出
摘要 提出了一种新型全自动稳健的遥感图像配准算法。首先,在图像二维平面空间和尺度空间中同时检测局部极值作为特征点,并在特征点邻域提取局部不变特征描述子——尺度不变特征变换(SIFT)。然后,利用距离测度进行SIFT特征匹配得到初步的匹配集合。最后,运用稳健的随机采样一致性(RANSAC)算法将匹配点集划分为内点和外点,在内点域上精确地估计出图像变换模型。实验利用仿真数据测试了SIFT特征的可重复性和可匹配性,利用卫星图像验证了该自动配准算法的有效性和稳健性。 A novel automatic and robust remote sensing image registration method is proposed. At first, the feature points are identified as local extrema both in 2D-space and scale space of the image, and the local invariant feature descriptors are extracted in the neighborhoods of the feature points, named as scale invariant feature transform (SIFT). Then an initial matching set is obtained by matching the SIFt features based on the distance gather. At last, the matching point set is divided into inner and outer point using robust random sample consensus (RANSAC) algorithm, and the image transform model is accurately estimated by the inner sub-set. The repeatability and matchability of SIFT features are tested by the simulated experiment. The validity and the robustness is validated by the experiment with satellite image of the proposed method.
作者 罗宇平
出处 《传感器与微系统》 CSCD 北大核心 2009年第10期12-15,共4页 Transducer and Microsystem Technologies
关键词 尺度不变特征变换 内点外点 随机采样一致性 自动配准 scale invariant fenrure transform(SIFF) inliers and outliers random sample consensus(RANSAC) automatic registration
  • 相关文献

参考文献7

二级参考文献26

  • 1Richard Szetiski. Video mosaics for virtual environments [J].IEEE Computer Graphics and Applications, 1996,16 (2):22-33. 被引量:1
  • 2Pallefeys M. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences [D]. Belgium: K. U,Leuven,1998. 被引量:1
  • 3Peter J Burg, Edward H Adelson. A multiresolution spline withapplication to image mosaics [J]. ACM Transactions on Graphics, 1988,7.(4) 1217-236. 被引量:1
  • 4Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision[M]. Cambridge: The Press Syndicate of The University of Cambridge,UK,2000. 被引量:1
  • 5Fisehler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography [ J ]. Communication Association Machine, 1981,24(6) :381-395. 被引量:1
  • 6Press W H, Teukolsky S A, Vetterling W T, et al. Nuericla Recipes in C[M]. Cambridge: Cambridge University Press, UK,1992:681-688. 被引量:1
  • 7Richard Szeliski, Heuttg-Yeung Shum. Creating full view pactoramic image mosaics and texture-mapped models [J].SIGGRAPH 97 Conference Proceedings, 1997.3(1):251-258. 被引量:1
  • 8Brandt S. Maximum likelihood robust regression with known and unknown residual models. In: Proc. of the ECCV 2002. 2002.97-102. 被引量:1
  • 9Murray PTD. The development and comparison of robust methods for estimating the fundamental matrix. Int'l Journal of Computer Vision, 1996. 1-33. 被引量:1
  • 10Zhang ZY. Determining the epipolar geometry and its uncertainty: A review. Int'l Journal of Computer Vision, 1998,27(2):161-195. 被引量:1

共引文献236

同被引文献20

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部