期刊文献+

基于二代Curvelet变换的自适应图像去噪

An adaptive image denoising algorithm based on second generation Curvelet transform
原文传递
导出
摘要 小波变换不能够最优地表示图像的边缘,而Curvelet变换硬阈值去噪后的图像过于平滑。二代离散Cur-velet变换运算速度非常快,而且基于Bayes原理的自适应阈值选择是子带变化的,具有最小的Bayesian风险。提出了一种基于二代Curvelet变换同Bayes原理相结合的自适应图像去噪算法,实验结果表明,该算法不仅能够有效地去除了噪声、较好地保留了图像的边缘信息,而且运算快速。 Wavelet transform cant excellently express image edges, and images after Curvelet transform denoising based on hard threshold is too smoothing. Second generation discrete curvelet transform operates rapidly and adaptive threshold selection based on Bayes theory varies along with sub-bands, so it has the least Bayesian risk. The paper proposed an adaptive image denoising algorithm based on second generation curvelet transform and Bayes theory. Experiment results show that the algorithm could not only remove the noise while preserving image edges, but also operate rapidly.
出处 《测绘科学》 CSCD 北大核心 2009年第5期84-86,共3页 Science of Surveying and Mapping
关键词 小波变换 RIDGELET变换 CURVELET变换 图像去噪 wavelet transformation Ridgelet transformation Curvelet transformation image denoising
  • 相关文献

参考文献11

  • 1E J Candes,L Demanet,D L Donoho,et al.Fast Discrete Curvelet Transforms[R].Applied and Computational Mathematics.California Institute of Technology,2005,1-43. 被引量:1
  • 2焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 3冈萨雷斯.阮秋琦等译.数字图像处理[M].北京电子工业出版社,2003. 被引量:2
  • 4E J Candes and D L Donoho.New tight frames of curvelets and optimal representation of objects with piecewise-singularities[J].Commun.on Pure and Appl.Math,2004,57(2). 被引量:1
  • 5E J Candes and D L Donoho.Curvelets-A surprisingly effective nonadaptive representation for objects with edges[C]// in Curves and Surfaces Fitting:Saint-Malo 1999,A Cohen,C.Rabut,and L.L.Schumaker,Eds.Nashville,TN:Vanderbilt University Press,1999. 被引量:1
  • 6E J Candes.Ridgelets:Theory and Applications[D].USA:Department of Statistics,Stanford University,1998:23-38. 被引量:1
  • 7Chang S G,Bin Yu,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Trans.Image Processing,2000,(9). 被引量:1
  • 8D.L.Donoho,I.M.Johnstone.Ideal Spatial Adaptation via Wavelet Shrinkage[J].Biometrika,1994,81(3). 被引量:1
  • 9J L.Starck,E.J.Candes,D.L.Donoho.The Curvelet Transform for Image Denoising[J].IEEE Trans.Image Processing,2002,11(6):223-270. 被引量:1
  • 10刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81. 被引量:45

二级参考文献43

  • 1王建国,杨晋浩,黄顺吉.一种新的SAR图像Speckle滤波算法[J].电子科技大学学报,1995,24(5):461-466. 被引量:7
  • 2唐伶俐,江平,戴昌达.星载SAR图象斑点噪声消除方法效果的比较研究[J].环境遥感,1996,11(3):206-211. 被引量:18
  • 3[4]Lopes A, Touzi R,Laur H. Structure detection and statistical adaptive speckle filtering in SAR images[J]. International Journal of Remote Sensing, 1993, 14(9). 被引量:1
  • 4[5]Lopes,R.Touzi R and E Nezry.Adaptive speckle filters and scene heterogeneity [J].IEEE Trans. On Geoscience and Remote Sensing,1990,28(6):992-1000. 被引量:1
  • 5[6]Zhenghao Shi ,Fung K B.A comparison of digital speckle filters [A].In:Geoscience and Remote Sensing Symposium[C],1994,4:2129-2133. 被引量:1
  • 6[7]A Ndi Nyoungui.Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images [J].INT.J.Remote Sensing,2002,23. 被引量:1
  • 7徐长发 李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004.. 被引量:65
  • 8Do M N, Vetterli M. Contourlet: a computational framework for directional multiresolution image representation[R]. Submitted to IEEE Trans. on Image Processing, 2003, http:∥www.ifp.uiuc.edu/ minhdo/publications. 被引量:1
  • 9Donoho D L. Wedgelets: nearly-minimax estimation of edges[J]. Ann. Statist., 1999;27:859-897. 被引量:1
  • 10Pennec E L, Mallat S. Image compression with geometrical wavelets[A]. In Proc. of ICIP'2000[C], Vancouver,Canada, September 2000;661-664. 被引量:1

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部