期刊文献+

一致收敛下极限系统的传递性研究 被引量:8

Transitivity of the Limit System under Uniform Convergence
下载PDF
导出
摘要 首先讨论了在强一致收敛下极限系统的轨道闭包、回归点集以及极小点集与序列系统中的相应集合之间的关系,并通过举例说明在一致收敛条件下没有上述相应结果.然后,我们利用这些结果给出了拓扑传递性、极小性及区间上周期点稠密性关于强一致收敛遗传性的不同于文献中曾凡平等人的另一种证明. In this paper, we first study the relationships of the orbit closure, the recurrence set and minimal points set between the dynamical systems sequence and the limit system under strongly uniform convergence, and give some counterexamples to show they are wrong under uniform convergence. Then, we use another method that different from Zeng Fan-ping, et al's to prove the topological transitivity, the minimality and the denseness of the oeriodic in interval can be inherted bv strongly uniform convergence.
出处 《广西师范学院学报(自然科学版)》 2009年第3期10-14,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金项目(10661001) 广西自然科学基金(0897012 0832275) 广西教育厅基金(200807MS001) 广西财经学院科研项目(2009B02) 柳州师专自然科学基金(LSZ2007A003)
关键词 强一致收敛 拓扑传递 极小性 弱不交性 几乎等度连续 strongly uniform convergence topological transitive minimatity weak disjointness almost equicontinuous
  • 相关文献

参考文献5

  • 1RAGHIB A, KIFAH A. Uniform covergence and chaotic behavior[J]. Nonlinear Analysis,2006(65) : 933-937. 被引量:1
  • 2曾凡平,严可颂,刘新和.强一致收敛与动力性质(英文)[J].广西大学学报(自然科学版),2008,33(3):305-309. 被引量:13
  • 3BLOCK L, COPPEL W. Dynamics in one dimealsion[ M]. Berlin: Springer-Verlag, 1992. 被引量:1
  • 4KOLYADA S, SNOHA L. Some aspects of topological transitivity-a survey[J]. Grazer Mathematische Berichte, 1997 (334) : 3-35. 被引量:1
  • 5WALTERS P. An introduction to ergodic theory[ M]. New York: Springer-Verlag, 1982. 被引量:1

二级参考文献10

  • 1Raghib Abu-Saris, Kifah Al-Hami, Uniform convergence and chaotic behavior [J]. Nonlinear Analysis, 2006,65 : 933-937. 被引量:1
  • 2Waiters P. An introduction to ergodic theory [M]. New York :Graduate Texts in Mathematics, 79, Springer-Verlag, 1982. 被引量:1
  • 3J. de Vries ,Elements of topological dynamics [M]. Mathematics and Its Applications 257, Kluwer Academic Publishers ,Dordrecht, 1993. 被引量:1
  • 4Block L S,Coppel W A. Dynamics in one dimension [M]. Berlin: Lecture Notes in Math-ematics, 1513, Spinger-Verge, 1992. 被引量:1
  • 5Kolyada S, Snoha L. Some aspects of topological transitivity-a survey [J]. Iteration theory (ECIT 94) (Opava), 3-35, Grazer Math. Ber. , 334, Karl- Franzens-Univ. Graz, Graz, 1997. 被引量:1
  • 6Vellkoop M, Berglund R. On intervals, transitivity = chaos [J]. Amer. Math. Monthly, 1994, 101 (4) : 353-355. 被引量:1
  • 7Banks J, Brooks J, Cairns G, et al. Staeey, On Devaney's definition of chaos [J]. Amer Math Monthly, 1992,99:332-334. 被引量:1
  • 8Sam B, Nadler Jr. Continuum theory, an introduction [M]. New York: Marcel Dekker Inc, 1992. 被引量:1
  • 9Zhang Gengrong, Zeng Fanping, Yan Kesong. The dynamical properties on map s of the Warsaw circle [ J ]. Journal of Guangxi University (Natural Science Edition) ,2006,31(1) : 36-39. 被引量:1
  • 10Zhang Gengrong, Zeng Fanping, Liu Xinhe, Limit behaviors on the induced maps of hyperspaces [J]. Journal of Guangxi University (Natural Science Edition), 2007,32 (1) : 55-59. 被引量:1

共引文献12

同被引文献21

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部