期刊文献+

基于仿真的武器—目标分配问题求解方法 被引量:5

Simulation-based Solution to Weapon-target Assignment
下载PDF
导出
摘要 武器—目标分配问题是一种NP问题。分析了武器—目标分配问题的特点,把武器—目标分配问题转化为加权运输问题,把不同权系数下运输问题的精确解作为原问题的近似解,权系数不同时运输问题的解对应原问题的目标函数值不同,可把武器—目标分配问题的目标函数看作权系数的函数。采用仿真方法产生权系数,计算相应运输问题的解及其对应的武器—目标分配问题的目标函数值,进行迭代搜索,逐步改进武器—目标分配问题的解,得到较好的近似解。实验结果表明:提出的仿真方法计算所得解的质量较高,是求解武器—目标分配问题的一种有效方法。 Weapon-target assignment problem (WTA) is NP. WTA was transformed into weighted transportation problem on the basis of analysis to feature of WTA. The exact solution of the weighted transportation problem is an approximation of the original WTA and different weight is corresponding to different objective values of WTA. So the objective function of WTA may be regarded as a function of the weight. By producing weight by simulation, getting the solution of transportation problem with the objective value corresponding to WTA, searching the weight by repeatedly iteration, improving the solution of WTA step by step, the better solution was achieved at last. Experiments show that the method based on simulation can get high quality solution of WTA and it's valid.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第20期6597-6599,共3页 Journal of System Simulation
关键词 仿真 武器-目标分配 运输问题 迭代 simulation weapon-target assignment transportation problem iteration
  • 相关文献

参考文献10

二级参考文献32

  • 1陈绍顺,王颖龙,王君.多武器系统的火力分配模型[J].电光与控制,2004,11(3):5-7. 被引量:6
  • 2聂成.目标分配的数学模型[J].系统工程与电子技术,1997,19(8):38-39. 被引量:7
  • 3何太由 等.毛泽东战法[M].北京:国防大学出版社,1988.117-204. 被引量:1
  • 4Johnson S M. Optimal two-and three-stage production schedules with setup times included[ J]. Naval Research Logistics Quarterly,1954, 1: 61-68. 被引量:1
  • 5Garey M, Johnson D, Sethi R. The complexity of flow shop and job shop scheduling[J]. Math. Ops. Res., 1976, 1: 117-129. 被引量:1
  • 6Nawaz M, Enscore E Jr, Ham I. A heuristic algorithm for the m-machine, n-job Flow-shop sequencing problem[J]. Omega,1983, 11(1): 91-95. 被引量:1
  • 7Sviridenko M I. A note on permutation flow shop problem[ EB/OL]. http://www. research. ibm. com/people/s/sviri/papers/flow_shop3. ps, 1999. 被引量:1
  • 8Taillard E. Benchmarks for basic scheduling problems[J]. European Journal of Operation Research, 1993, 64: 278-285. 被引量:1
  • 9Barbulescu L, Watson J P, Whitley L D, et al. Problem structure and Flow-shop scheduling[ EB/OL]. Proceedings of the Sixteenth Congreso de Ecuaciones Diferencialesy Aplicaciones, 1999. http://www. cs. colostate. edu/: 27-38. 被引量:1
  • 10Steeb W H.The nonlinear workbook:Chaos,fractals,cellular automata,neural networks,genetic algorithms,fuzzy logic,with C++,java,symbolic C++and reduce programs [M].River Edge,NJ:Singapore,World Scientific Publishing Co.,2001. 被引量:1

共引文献150

同被引文献43

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部